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1 Introduction

The severity of recent financial crises and the strong contagion and interconnection between
modern globalized economies, has lead economists to be interested in two major econometric
exercises: the monitoring and analysis of the large amount of information provided in hun-
dreds of macroeconomic and financial indicators; and the timely identification, estimation
and forecasting of structural breaks and permanent shocks that can hit the economy. In the
recent literature, dynamic factor models (DFMs) have been an influential empirical approach
in dealing with the former issue1. In fact, the relevant literature is so vast and all sorts of dy-
namic factor models have been developed: to extract leading indicators (Stock and Watson,
1989); to forecast using large datasets (Stock and Watson, 2002); and to measure monetary
policy using hundreds of variables (Bernanke, Boivin and Eliasz, 2005). At the same time the
issue of structural breaks has been very important in all aspects of time-series research, es-
pecially for forecasting (Stock and Watson, 1996). Observation of episodes such as the Great
Inflation, the Great Moderation and, of course, the recent Great Recession, have sparked a
renewed interest for flexible econometric modelling. Therefore, given the turbulent times we
live in, it is no surprise that both academics and researchers in central banks have been work-
ing over the past decade predominantly with models with drifting coefficients and stochastic
volatilities, that can capture a wide range of nonlinearities and structural breaks; Cogley and
Sargent (2001), Sims and Zha (2006), and Primiceri (2005) are a few influential examples of
flexible macroeconometric modelling.

In this paper we develop efficient Bayesian estimation methods for time-varying parame-
ter dynamic factor models. That is, we estimate unobserved factors coming from a dynamic
factor model under a general and flexible form of structural breaks in the coefficients and
volatilities. Our ultimate purpose is to accomplish in one comprehensive setting both needs
of modern macroeconomists, i.e. to forecast with large datasets while accounting for struc-
tural instabilities. In that respect, we follow the standard practice in the macroeconomics
literature over the past four decades and we work with DFMs which allow all parameters to
drift at each point in time (Cogley and Sargent, 2005). Our paper adds to a vastly expand-
ing recent literature arguing in favour of structural instabilities in the loadings, coefficients,
and/or volatilities of dynamic factor models; see Banerjee et al. (2008), Del Negro and Otrok
(2008), Stock and Watson (2009), Breitung and Eickmeier (2011), Eickmeier, Lemke and Mar-
cellino (2011), Bates, Plagborg-Møller, Stock and Watson (2013), Cheng, Liao and Schorfheide
(2013), Corradi and Swanson (2013), Korobilis (2013). However, the major contribution of
this paper is that we develop algorithms for numerically stable and computationally efficient
estimation of DFMs with time-varying parameters, that make monitoring and recursive fore-
casting using large macroeconomic datasets a feasible task.

We propose an estimation algorithm based on the concepts forgetting and variance dis-
counting (Koop and Korobilis, 2013), which strike the balance between estimation accuracy
and computational tractability in different ways. We propose a two-step estimation proce-
dure which is simulation-free and can allow fast updating of the time-varying parameters
as well as the factors and is appropriate for high dimensional factor models (e.g. with 100+

1The only exception being the analysis of “large vector autoregressions” (Canova and Ciccareli, 2009; Banbura,
Giannone, and Reichlin, 2010; Koop and Korobilis, 2013).
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variables). We examine a simple case where we replace all time-varying covariance matrices
with point estimates, and extend to the case where we fully incorporate uncertainty around
the time-varying covariances. We show that computation is tractable, with zero probability
of programming error or numerical instability occuring even when estimating the TVP-DFM
with nonstationary data. We show that we don’t have to impose any of the usual unrealistic
identification and normalization restrictions that are regularly adopted in likelihood-based
estimation of factor models; see Del Negro and Otrok (2008) and Korobilis (2013). Finally, we
provide extensions of our algorithms in several directions which, with the cost of higher com-
putational demands, can provide more accurate approximation to the posterior distribution
of the time-varying coefficients and covariances.

While it is not obvious how to establish theoretical properties of estimators under very
general TVP-DFM structures (see, for instance, the relevant discussion in Bates et al., 2013),
we first establish using Monte Carlo experiments that using both our proposed algorithms we
can estimate factors which are more accurate than principal components when the true data
generating process is a DFM with structural instabilities. We also show that our algorithms
are much more computationally stable than popular Markov Chain Monte Carlo (MCMC)
algorithms for estimating models with time-varying parameters (Cogley and Sargent, 2005;
Del Negro and Otrok, 2008).

In order to show the diverse benefits of the two proposed estimators, we use two datasets
which admit a typical factor structure, but which also have very different characteristics in
terms of the number of variables, number of time-series observations, and intensity of (ex-
pected) structural instabilities in the loadings. In the first empirical application we show the
benefits of the three-step estimator in a recursive forecast exercise for German GDP. The fac-
tors are estimated from a large data set consisting of quarterly observations on 123 variables
observed over the period 1978Q2-2013Q3 thus expanding on the factor forecast results based
on PC factors in Schumacher (2007). We show that the factor forecasts from the TVP-DFM
provide lower mean-squared forecast errors compared to principal components forecasts. An
analysis of the sources of improvements reveals that it is mostly time variation in volatil-
ity that matters most, whereas time variation in factor VAR parameters play no role. In the
second empirical application we show the benefits of the proposed Monte Carlo sampling
algorithm by extracting a single common factor from sovereign bond spreads for 10 Euro-
zone countries (base country is Germany) for the period 1999M1-2012M12. This is a typical
example of variables which comove together, and are subject to successive, massive struc-
tural breaks in the second half of the sample. We use the posterior distribution of the factor
and the time-varying parameters and volatilities in order to obtain the full predictive density
of the nonlinear spreads series. We show as well that the TVP-DFM estimated with Monte
Carlo sampling gives at least 50% higher predictive likelihoods compared to estimates from
a time-invariant DFM estimated with MCMC methods.

In the next section we present the general TVP-DFM structure we assume, and discuss the
details and characteristics of each of the two proposed algorithms. We also provide details
about the nature of the forecasting setting that is more appropriate for each algorithm. Section
3 evaluates estimation accuracy of both algorithms using Monte Carlo simulations. Section
4 demonstrates the superior forecasting performance obtained by estimating a TVP-DFM as
opposed to a DFM with constant parameters estimated with principal components, MCMC or
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the two-step estimator of Doz et al. (2011). Section 5 concludes and discusses the implication
of this paper for further research.

2 The DFM with time-varying parameters

Our starting point is the standard factor model with factor VAR dynamics, which we extend
by allowing all coefficients and volatilities to be time-varying. Let xt be an p� 1 “large” vector
of data, then the model we analyze takes the following form

xt = λt ft + εt, (1)
ft = Bt ft�1 + ηt, (2)

where ft is the k � 1 vector of factors, λt is the p � k factor loadings, Bt is a k � k matrix
of VAR(1) coefficients2, and εt and ηt are disturbance terms. In line with the vast majority
of the macroeconomic literature we assume that εt � N (0, Vt), where Vt is a p � p diag-
onal3 covariance matrix, and ηt � N (0, Qt), where Qt is a k � k covariance matrix. As-
suming that the initial condition of ft is zero, then this model indirectly implies that ft �
N
�

0, (Ik � BtL)
�1 Qt (Ik � BtL)

�10
�

. We assume that the εt are uncorrelated with either ft or
ηt at all leads and lags.

This model is quite general to allow for any kind of nonlinearities and/or structural in-
stabilities that might occur in λt and βt. Granger (2008) has formalized this argument and
showed that by specifying parameters to change each time period, we can approximate com-
plex forms of nonlinearities in our data. Finally, the DFM with structural instabilities also
nests the typical time-invariant parameter DFM, when we restrict variation in all parameters.

What is missing so far from the time-varying parameter DFM is to define how the co-
efficients evolve, as well as properly define their initial conditions. We do this in the next
subsections. Since we are dealing with a very rich model, for the sake of clarity in the next
two subsections we separate our presentation into the specification and estimation of the
time-varying parameters [λt, ft, βt], and the specification and estimation of the time-varying
covariances [Vt, Qt]. Then in the next Section we discuss feasible algorithms for combined
estimation of all model parameters, discuss their features, their computational feasibility, and
the identification of this large model.

2.1 Specificication and estimation of time-varying coefficients

The coefficients λt and βt evolve as driftless random walks of the form

λt = λt�1 + νt, (3)
βt = βt�1 + υt, (4)

2We assume for simplicity a VAR(1) structure with no intercept term just for notational simplicity. This
shouldn’t cause any concern since every higher-order VAR admits a VAR(1) representation.

3This not be the case in approximate factor models, where Vt can allow for some correlation. Since we are
interested in likelihood-based estimation, we follow Lopes and West (2004) and others who assume a diagonal
covariance matrix.
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where βt = vec (B0t), and νt � N (0, Rt) and υt � N (0, Wt) are iid errors, uncorrelated with
each other as well as εt and ηt at all leads and lags. This is a standard assumption in the vast
majority of the macroeconomics literature at least since Cooley (1971); see Koop and Korobilis
(2010) for a review.

Starting with [λt, ft, βt], in order to simplify their estimation we note that the model can be
divided into three simple conditionally linear state-space models: Conditional on estimates
of the factors, equations (1) and (3) solely contain the loadings λt as a state variable, whereas
equations (2) and (4) solely have βt as the state variable. Conditional on all model parameters,
including λt and βt, equations (1) and (2) form a linear state-space model with state variable
ft. As long as the errors in all equations are uncorrelated with each other, sequential esti-
mation of each state variable conditional on all other parameters and data (e.g. using the EM
algorithm or the Gibbs sampler), is quite natural and can provide an exact, consistent approxi-
mation to the joint posterior of the states [λt, ft, βt]. However, exact estimation using iterative
algorithms such as the Gibbs sampler is subject to identification and numerical problems4,
and computation becomes nearly infeasible when considering recursive forecasting.5

Therefore our first approximation is to consider estimating [λt, ft, βt] sequentially from
conditionally linear state-space models, but not necessarily within a (Markov Chain) Monte
Carlo scheme. We expand on this issue later in the next section. At this point it is worth not-
ing that as we are dealing with linear state-space models, the Kalman filter is an integral part
of our estimation approach. However, in our model, we have to estimate large state covari-
ance matrices, which makes it necessary to stabilize the Kalman filter estimation numerically.
In our model it is the case that Rt and Wt can be of massive dimensions6 and thus their ac-
curate estimation using standard likelihood-based formulas (e.g. based on the residual sum
of squares) is questionable. The information in the data might not be sufficient to accurately
estimate these covariance matrices, or their eigenvalues might become high and conflict infor-
mation in our prior or historical data; see Kulhavý and Zarrop (1993) for more details. In or-
der to deal with this issue we follow Koop and Korobilis (2013) and several others, and allow
Rt and Wt to be proportional to the filtered covariance matrices of λt�1jxt�1 and βt�1jxt�1,
respectively, where xt = (x1, ..., xt) denotes all the data information available at time t. If
we define the covariance matrices Pλ

t�1jt�1 = cov
�
λt�1jxt�1� and Pβ

t�1jt�1 = cov
�

βt�1jxt�1�,
which are readily available from the Kalman filter at time t, we have

Rt =
�

µ�1
1 � 1

�
Pλ

t�1jt�1, (5)

Wt =
�

µ�1
2 � 1

�
Pβ

t�1jt�1, (6)

where 0 < µ1, µ2 � 1 are forgetting factors which allow to discount past data more. Notice
that Pλ

t�1jt�1 and Pβ

t�1jt�1 are readily available at time t from the Kalman filtering algorithm.

4See for instance the discussion in Del Negro and Otrok (2008).
5The full model can be viewed as a nonlinear state-space model with state θt = [λt, ft, βt] which can be esti-

mated using nonlinear filters such as the Extended Kalman Filter or the Uncented Kalman Filter; see Koopman et
al. (2010). We have found both techniques highly unstable in the presence of the (possibly) large dimension of the
loadings matrix λt.

6For instance, if we consider empirical applications such as the one by Stock and Watson (2005) with 132
variables in xt, 10 factors in ft and 12 lags p, it will be the case that Rt will be a 1320� 1320 matrix while Wt will
be a 1200� 1200 matrix.
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Koop and Korobilis (2012, 2013) explain in detail why this is a good approximation and how
to interpret and estimate the forgetting factors µ1, µ2. The Kalman filter with forgetting factor
can be used both in adaptive filtering, as well as when using simulation. Details of the Kalman
filter and smoother in the presence of forgetting are given in the Appendix.

2.2 Specification and estimation of time-varying covariance matrices

One can typically specify multivariate stochastic volatility models for the covariances as Del
Negro and Otrok (2013), or multivariate GARCH models as in Sentana and Fiorentini (2001).
Such specifications of the volatilities will typically rely on computationally intensive Monte
Carlo sampling methods or complex numerical optimization procedures. Our proposal for
feasible estimation of the covariance matrices relies on two estimators.

Exponentially Weighted Moving Average: In the first case we follow Koop and Korobilis
(2013) and we assume that Vt and Qt are not random variables. Given initial values V0 =
diag (V) and Q0 = Q, we obtain point estimates of Vt and Qt from exponentially weighted
moving average (EWMA) filters of the form

bVt = δ1 bVt�1 + (1� δ1) diag
�bεtbε0t� , (7)bQt = δ2 bQt�1 + (1� δ2) bηtbη0t, (8)

where bεt, and bηt are residuals in the measurement and state equations at time t, and 0 <
δ1, δ2 � 1 are decay factors giving increasingly more weight to recent data the lower their
values are.

Wishart matrix discounting: In the second case, given priors V0 � iG (S, v) and Q0 �
iW (Ψ, n), we use Wishart matrix discounting (WMD) models (West and Harrison, 1997) of
the form

Vt � iW (St, nt) , (9)
Qt � iW (Ψt, vt) , (10)

where nt = δ1nt�1 + 1 and St =
�

1� n�1
t

�
St�1 + n�1

t

h
S1/2

t�1
eV�1/2

t�1 diag
�bεtbε0t� eV�1/2

t�1 S1/2
t�1

i
, vt =

δ2vt�1 + 1 and Ψt =
�

1� v�1
t

�
Ψt�1 + v�1

t

h
Ψ1/2

t�1
eQ�1/2

t�1 bηtbη0t eQ�1/2
t�1 Ψ1/2

t�1

i
. In the equations

above iW denotes the inverse wishart distribution with mean E (Vt) = St/ (nt � 2) and har-

monic mean E
�

V�1
t

��1
= St/ (nt + p� 1) (similarly for Qt). Details on how to compute the

matrices eVt�1 and eQt�1 are derived in the appendix.
Both estimators discount older observations faster as δ1, δ2 get lower, by placing more

weight on the current (time t) squared idiosyncratic components εtε
0
t and residuals ηtη

0
t. This

feature might not be so clear for the Wishart matrix discounting case, but after marginalizingeVt�1 we can show that the point prediction for Vt is equivalent to the EWMA estimator (see
Windle and Carvalho, 2013, for a proof).
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3 Algorithms for combined model estimation: computation, stabil-
ity, and model identification

3.1 A simple two-step, one iteration algorithm

We can now examine how to implement combined estimation of all model parameters. Here
we build on the work of Koop and Korobilis (2014), as well as Doz et al. (2011, 2012). In partic-
ular, we can obtain a recursive solution for the time-varying parameters and the time-varying
covariances using a single iteration of the different filters from time t = 1, ..., T, without the
need to rely on simulation. In order to achieve this we note that for both the EWMA and
the WMD we need to compute the time t residuals bεt and bηt based on the equations (1) and
(2), respectively. Of course, these residuals need to be computed for any other likelihood-
based estimator of the covariance matrix, e.g. an OLS estimator of the covariance or stochas-
tic volatility. Our approximation entails that once we observe data at time t we estimate the
covariance matrices using the Kalman filter prediction errors which are defined as

bεt = xt � λtjt�1 ft, (11)bηt = ft � Btjt�1 ft�1, (12)

conditional on preliminary factor estimates. The prediction errors are easy to compute, since
at time t we are using the known values λtjt�1 and βtjt�1 = vec

�
B0tjt�1

�
instead of the un-

kown λt and βt. Once these residuals are calculated, we can update Vt, Qt which allows
straighforward update of λt, βt using the Kalman filter. Therefore, using this approximation
to obtaining the time t residuals and with the assistance of our simple recursive EWMA and
WMD estimators for the covariance matrices, we can define a simple two-step estimator in the
spirit of the two-step estimator that Doz et al. (2011) have proposed in the constant parameter
DFM. The full algorithm involves the following steps:

Algorithm 1: Two-step, one iteration

0. Obtain the principal component estimate of the factors f PC
t , and initialize all parameters

(λ0, β0, V0, Q0)

1. Estimate (λt, βt) and (Vt, Qt) using the Kalman filter and smoother with forgetting and
covariance discounting conditional on ft = f PC

t

(a) For t = 1, ..., T

� Estimate Vt based on the residual bεt = xt � bλtjt�1 ft, and Qt based on the resid-
ual bηt = ft � bBtjt�1 ft�1 using either the EWMA or the WMD estimators

� Update λt and βt given Vt, Qt, xt, and ft

(b) For t = T, ..., 1 run a typical (e.g. a fixed interval) smoother

2. Estimate ft using the Kalman filter and smoother, where all parameters of the state-
space model are known from the previous steps
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The algorithm described above has several advantages. Estimation is quite simple since
we need to run once three Kalman filters - one for each conditionally linear state-space model
- and not iterate over these steps thousands of times as in MCMC algorithms. The recur-
sive estimators for the covariances are also computationally efficient. Thus we can have an
estimate in seconds even for the most demanding models. Most importantly, identification
of the factors is guaranteed, at least to the level that identification of principal components
is guaranteed, see Bai and Ng (2013). We can explain this very important issue intuitively.
First, notice that the time-varying parameters and covariances in step 1 are estimated condi-
tional on the PC estimates of the factors, that is the factors are given in our information set.
Additionally, there is no identification issue between time-variation in the mean (λt, βt) and
time-variation in the covariances (Vt, Qt) of each of the DFM equations. This is a feature which
results from the approximation of the time t residuals using the parameters

�bλtjt�1, bβtjt�1

�
in-

stead of the unkown . As a result, we can estimate Vt, Qt conditional on quantities which are
all known at time t, and then subsequently update λt, Bt given time t estimates of the time-
varying covariances. Then in a recursive manner, at time t + 1 we follow exactly the same
procedure, until we reach the last observation.7

Finally, we need to note that the procedure described above can be used for both the
point (EWMA) and full Bayesian (WMD) estimators of the covariance matrices Vt and Qt.
In the case of the EWMA estimator this is straightforward, since it immediately provides a
single value for the covariance matrices. For the WMD we obtain a full posterior distribution
for these covariance matrices. Therefore, in light of avoiding the need to simulate from this
posterior using computationally intensive Monte Carlo methods, we can simply feed the har-

monic mean estimates E
�

V�1
t

��1
= St/ (nt + p� 1) and E

�
Q�1

t

��1
= Ψt/ (vt + k� 1) into

the Kalman filter.

3.2 Extensions of the basic framework

In computationally demanding big-data applications, such as forecasting GDP or inflation
using large panels with more than 100 macroeconomic variables (Stock and Watson, 2002)
or constructing factors from vast dimensional covariance matrices of returns, the algorithm
presented above provides a feasible approach to estimating the parameters of the TVP-DFM.
In other applications which involve smaller datasets, the algorithm above can be modified to
provide higher estimation precision. We discuss here such possibilities.

First, notice that for the WMD estimator, the algorithm above does not allow to obtain
samples from the joint posterior of the time-varying parameters and covariances. As we show

7Note that smoothing, i.e. running backward recursions to obtain estimates at time t given information at time
t+ s, s > 0, can be implemented using exact formulas, since it only depends on having estimates of all parameters
from the forward recursions. In our algorithm we are using the Kalman smoother because we find it very useful
in getting more precise estimates. Nevertheless, use of the Kalman smoother is not necessary if one wishes to
pursue online estimation and forecasting. In this case only the forward iteration of the Kalman filter can be used,
and there is no need to re-estimate the model from time 0 every time we want to forecast (in which case, the gains
in computation are massive). See Koop and Korobilis (2012) for an example.
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in the appendix, these joint posteriors are of the form

λt, Vt � NIW
�

λtjT, Pλ
tjT, StjT, vtjT

�
,

βt, Qt � NIW
�

βtjT, Pβ

tjT, ΨtjT, ntjT
�

.

where NIW denotes the Normal-Inverse-Wishart distribution, and exact details of the hyper-
parameters are given in the Appendix. In this case, we can use Monte Carlo Integration to
obtain samples from this distribution which involves iteratively sampling Vt from an inverse
Wishart distribution, and then sampling λt from a Normal distribution conditional on Vt. We
can proceed similarly for βt, Qt. This procedure can provide samples from the approximate
posterior of the model parameters. Conditional on these, we can use the simple Kalman fil-
ter/smoother or the simulation smoother (Carter and Kohn, 1994) to obtain samples from the
posterior distribution of the factors.

Another possibility is to iterate steps 1 and 2 of our basic algorithm where in the second
iteration and beyond we can estimate (λt, βt) and (Vt, Qt) conditional on the estimate of ft
from the previous step. The resulting Expectation Conditional Maximization (Gelman, Carlin,
Stern and Rubin, 2004) resembles the EM algorithm extension proposed by Doz et al. (2012).
There are advantages and disadvantages of implementing this approach. On the one hand,
we can possibly get better a approximation of the posterior, e.g. if we iterate multiple times we
not only condition on ft from the previous iteration, but we can also calculate the residualsbεt and bηt using estimates of λtjT and βtjT from the previous iteration.8 On the other hand,
there is no guarantee that the system is identified. In this case we need to use identification
and normalization restrictions in order to properly identify the factors and the time-varying
parameters. Zero restrictions are typically applied in the loadings λt and covariances Qt and
Vt, as in Geweke and Zhou (1996) and Aguilar and West (2000). Alternatively, some initial
conditions can be fixed instead of being considered random, e.g. setting λ0 = 0 instead of the
diffuse prior λ0 � N (0, 100); see Del Negro and Otrok (2008) for more information on this
issue. Additionally, when iterating this algorithm mutliple times we need to have a stopping
rule (e.g. converge of the likelihood to a fixed value), which is guaranteed theoretically but is
not always practically feasible, especially in high-dimensional dynamic factor models.

4 Simulations

In this Section we carry out a small Monte Carlo study to numerically evaluate the perfor-
mance of the algorithms to accurately track the true factors coming from a DFM with para-
meters that evolve as random walks. In particular, we generate artificial observations for the
following data generating process which broadly follows Banerjee, Marcellino and Masten

8We remind that in the one-iteration case, these parameters are replaced with λtjt�1 and βtjt�1 which are
obtained from the previous period estimates of the Kalman filter.
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(2008) and Bates et al. (2013)

xit = λit ft +V1/2
i εit,

λit = λit�1 + (c�) εit,
λi0 � N (0, a) , a � U (0, 1)

ft = Bt ft�1 +Q1/2εt, Bt = βt Ik,

βt = βt�1 +
�

dT�1
�

εt,

β0 = b.

where i = 1, . . . , N and t = 1, . . . , T, and εt denote standard Normal disturbances which are
of appropriate dimensions for each equation they appear. In such a rich specification there
are many choices that need to be made. First, we simplify the structure of the covariance
matrices9 in the factor and VAR equations () and (), respectively, by assuming that Vi �
U (0, 1) and Q = diag

�
q

1
, ..., q

k

�
where q

j
� U (0, 1) for all j = 1, ..., k. This assumption

allows us to focus on the actual effect of time variation in the parameters λt and βt on the
final factor estimates. We also set b = 0.5 and d = 0.4.

The crucial parameter in our simulation is the one controlling the amount of time-variation
in the loadings10, i.e. the parameter c�. We specify three different values of c� which corre-
spond to slow, medium and fast changes in λit 8i. For the slow and medium variation we
follow Bates et al. (2005) and specify c� = cT�3/4 with c = 2 and 3.5, respectively. For the
faster time-variation we set c� = 4.5T�3/4.

For all simulation results we generate from the above DFM data generating process with
one factor and one lag, and we respectively estimate models with one factor (and one lag
when not using principal components). Our interest lies on factor estimation, therefore, we
do not implement model selection and assessment of misspecification. For application of de-
terministic and stochastic model selection techniques using predictive likelihoods the reader
is referred to Koop and Korobilis (2013) and Korobilis (2013), respectively. Estimation accu-
racy is assessed with the SFF0 statistic which is defined as

SFF0 =
tr
�

f 00 bf �bf 0 bf� bf 0 f0

�
tr ( f 00 f0)

,

where f0 is the true factor and bf is the estimated factor. SFF0 is standardized to have values
between zero and one, with one meaning that the estimated factors completely fit the true
factors.

First we implement a simulation exercise with small T and n, in order to assess both
the fast two-step estimator and the computationally more demanding Monte Carlo estima-
tor. Table 1 presents mean SFF0 statistics when generating combinations of small DFMs with

9Basically, the results presented here do not change qualitatively if we instead generate diagonal covariance
matrices following geometric random walks (stochastic volatility model).

10We have found that time-variation in the persistence of the factors (βt) is not of paramount importance for
factor estimation, at least compared to time-variation in the loadings (λt). This finding is in-line with the Monte
Carlo results of Banerjee, Marcellino and Masten (2008, Section 3.4).
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T = 40, 80, 120 and n = 10, 20. The columns present results for our two-step estimator with
known covariance matrices (2STVP), the Monte Carlo estimator (MCTVP), the 2-step estima-
tor of Doz et al. (2011) for the constant parameter DFM (2SC), and the principal components
nonparametric estimator (PC).

Table 1. Mean SFF0 statistics
T n 2STVP MCTVP 2SC PC
40 10 0.8169 0.8315 0.8223 0.8031
40 20 0.8684 0.8763 0.8595 0.8478
80 10 0.8119 0.8205 0.8094 0.7874
80 20 0.8747 0.8765 0.8578 0.8445
120 10 0.7950 0.8040 0.7950 0.7712
120 20 0.8667 0.8607 0.8499 0.8345

In Table 2 we generate a set of models with larger time-series and cross-sectional dimen-
sions, using combinations of T = 50, 100, 200, 500 and n = 50, 100, 200, 500. Here we only
assess the 2STVP estimator versus Doz et al. (2011) and the principal components.
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5 Assessment based on real data

In this section we evaluate empirically the performance of each of the two algorithms using
two datasets which are quite different in nature and call for a different treatment using factor
methods. The first one is a typical forecasting exercise where the target is to forecast GDP
using a large macroeconomic panel of hundreds of stationary variables. In the second empir-
ical analysis we use factor methods to extract a common component from a small number of
nonstationary financial variables (bond yields), and our purpose is to forecast the variables
themselves. We show that there are potential forecasting benefits for considering a nonlinear
factor specification versus using principal components, and we also provide solid evidence
that our estimation methodology is more stable than Markov Chain Monte Carlo (MCMC)
estimation of the TVP-DFM.

5.1 Forecasting using large panels

The first empirical exercise evaluates factor forecasts for German GDP growth with recent
data including the Great Recession. The recursive forecast simulation is in the spirit of Stock
and Watson (2002). The large data set consists of quarterly observations on 123 variables ob-
served over the period 1978Q2-2013Q3. The data is taken from Pirschel and Wolters (2014)
and represents an updated version of the data used in Schumacher (2007), where PC factor
forecasts have been addressed. The time series used here are described in detail in the appen-
dix of Schumacher (2007).

The initial sample period starts in 1978Q2 and ends in 2002Q2. Given that sample, the
factor models are estimated, forecasts derived and stored. Then, the end of the sample period
is expanded by one quarter, and the forecasts are repeatedly computed. We end up with
a sequence of forecasts and forecast errors. As a summary statistic, we compute the mean-
squared forecast error (MSE). In the Tables below, we report the MSE of a factor model relative
to the MSE of a benchmark AR model. The key competitor to the TVP-DFM is the diffusion
index ARDL model by Stock and Watson (2002). We use forecast equations with up to four
factors. The AR and lag order of the factors is specified using the BIC, which is applied
recursively with a maximum lag order of four.

To estimate the TVP-DFM, we employ the two-step algorithm from Section 2.1 given
the large size of the data set. To estimate drifting volatilities we em,ploy both EWMA and
WMD. To specify the model, we consider up to four factors. Initial conditions are diffuse:
f0 � N(0k�1, 4� Ik), vec(λ0) � N(0nk�1, 4� Ink), V = In, Q = cov( f PC

t ) for volatilities, and
β0 has a Minnesota prior as in Koop and Korobilis (2013). Note that the covariances of λ0 and
β0 also initialize Rt and Wt, respectively, in (5) and (6). We also have to specify the variance
discounting parameters: The forgetting factors µ1 and µ2 reflect the different degrees of time
variation in the loadings and VAR polynomial parameters, respectively. δ1 and δ2 determine
the time variation in the volatility of idiosyncratic components and factor VAR residuals.
Thus, we can choose between different combinations of time variation and volatility. To ex-
plore which of these potentially different sources of time variation matter most with respect
to forecasting accuracy, we choose a large grid of the discounting factors and the number of
factors. In particular, we compare 900 model specifications, where µ range from 0.96 to 1.00,
see Koop and Korobilis (2013), and the δ cover the range from 0.83 to 0.99.
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The forecast results for a subset of good models are summarized in Table 2 with EWMA
drifting volatilities in Panel A and with Wishart matrix discounting in Panel B. We report
forecasts for horizons up to four.
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Table 2: Relative MSE for forecasting German GDP growth

Panel A: EWMA
parameter specification Relative MSE at horizon

r δ1 δ2 µ1 µ2 1 2 3 4
1 TVP-DFM 2 0.83 0.83 1.00 1.00 0.77 0.95 0.98 1.08
2 TVP-DFM 3 0.83 0.83 1.00 1.00 0.77 0.95 0.98 1.09
3 TVP-DFM 2 0.87 0.83 1.00 1.00 0.77 0.95 0.98 1.08
4 TVP-DFM 3 0.87 0.83 1.00 1.00 0.77 0.95 0.98 1.09
5 TVP-DFM 2 0.99 0.83 1.00 1.00 0.76 0.96 1.00 1.10
6 TVP-DFM 3 0.99 0.83 1.00 1.00 0.77 0.96 1.00 1.12
7 TVP-DFM 2 0.83 0.99 1.00 1.00 0.82 1.04 1.09 1.10
8 TVP-DFM 3 0.83 0.99 1.00 1.00 0.83 1.06 1.10 1.20
9 TVP-DFM 2 0.99 0.99 1.00 1.00 0.82 1.07 1.12 1.24
10 TVP-DFM 3 0.99 0.99 1.00 1.00 0.83 1.08 1.13 1.24
11 TVP-DFM 2 0.99 0.99 0.98 0.98 0.82 1.07 1.12 1.24
12 TVP-DFM 3 0.99 0.99 0.98 0.98 0.83 1.08 1.13 1.24
13 PC 1 - - - - 0.86 1.02 1.02 1.08
14 PC 2 - - - - 0.87 1.01 1.01 1.09
15 PC 3 - - - - 0.91 1.02 1.01 1.09
16 PC 4 - - - - 0.94 1.06 1.08 1.15
17 AR - - - - - 1.00 1.00 1.00 1.00

Panel B: WMD
parameter specification Relative MSE at horizon

r δ1 δ2 µ1 µ2 1 2 3 4
1 TVP-DFM 2 0.83 0.83 1.00 1.00 0.77 0.95 0.98 1.08
2 TVP-DFM 3 0.83 0.83 1.00 1.00 0.77 0.95 0.98 1.10
3 TVP-DFM 2 0.87 0.83 1.00 1.00 0.77 0.95 0.98 1.08
4 TVP-DFM 3 0.87 0.83 1.00 1.00 0.77 0.95 0.98 1.08
5 TVP-DFM 2 0.99 0.83 1.00 1.00 0.76 0.95 0.98 1.08
6 TVP-DFM 3 0.99 0.83 1.00 1.00 0.76 0.95 0.99 1.10
7 TVP-DFM 2 0.83 0.99 1.00 1.00 0.81 1.02 1.06 1.17
8 TVP-DFM 3 0.83 0.99 1.00 1.00 0.80 1.02 1.05 1.16
9 TVP-DFM 2 0.99 0.99 1.00 1.00 0.80 1.03 1.07 1.18
10 TVP-DFM 3 0.99 0.99 1.00 1.00 0.80 1.03 1.07 1.18
11 TVP-DFM 2 0.99 0.99 0.98 0.98 0.96 1.43 1.64 1.95
12 TVP-DFM 3 0.99 0.99 0.98 0.98 0.95 1.49 1.77 2.18
13 PC 1 - - - - 0.86 1.02 1.02 1.08
14 PC 2 - - - - 0.87 1.01 1.01 1.09
15 PC 3 - - - - 0.91 1.02 1.01 1.09
16 PC 4 - - - - 0.94 1.06 1.08 1.15
17 AR - - - - - 1.00 1.00 1.00 1.00

The results of Table 2, Panel A, can be summarized as follows: The PC factor forecasts
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(rows 13-16) can outperform the AR benchmark (row 17) for h = 1, but not at longer hori-
zons. The best TVP-DFM can outperform the benchmark up to three quarters, complementing
existing results on the limits of GDP growth forecastability in Germany in Schumacher (2007).
Generally, TVP-DFM with two or three factors do best. Compared to PC factor forecasts, most
of the displayed TVP-DFM perform better at all horizons in terms of relative MSE (rows 1-
6). In particular, TVP-DFM do best mainly due to the volatility in the factor VAR residuals, as
δ2 = 0.83 leads to better forecast compared to δ2 = 0.99, (compare rows 1-6 to 7-12) . Volatility
in the idiosyncratic components does not seem to have a huge impact given the factor VAR
residual volatility with δ2 = 0.83 (compare rows 1-6): setting δ1 = 0.83, δ1 = 0.87 or δ1 = 0.99
yields quite similar forecast results. Setting very slow moving volatilitites δ1 = δ2 = 0.99
(rows 9-10) leads to a decline in forecast accuracy at all horizons, such that the forecasts are
uninformative compared to the benchmark for h = 2, 3. Time-varying loadings or VAR para-
meters cannot improve the forecasts. Specifying very slow moving volatilitites δ1 = δ2 = 0.99
and moderate timne variation in the loadings and VAR parameters µ1 = µ2 = 1.00 worsens
the forecast performance considerably (rows 11-12). The best models have µ1 = µ2 = 1.00,
implying no time variation at all. But overall, we find that variations in the volatility seems
to matter most for forecasting, see also Eickmeier, Marcellino and Lemke (2013).

If we compare results between Panel A with EWMA volatilities and Panel B with WMD,
we see no sharp differences. The best models with WMD seem to perform slightly better than
the corresponding EWMA models.

5.2 Forecasting sovereign bond yields

Another dataset which has an evident factor structure, is subject to structural changes, and
which has attracted much attention during the post-2009 Eurozone debt crisis, involves 10-
year sovereign bond yields as spreads from the 10-year yield of the German bund. We collect
data for ten Eurozone countries, namely Austria, Belgium, Finland, France, Greece, Ireland,
Italy, Netherlands, Portugal, and Spain, for the period 1999m1-2012m12. This is a small panel
of countries, and we have relatively short time series dimension for being in the monthly fre-
quency. However, there are evident breaks in these data as shown in Figure XXXX: around the
end of 2008 there is an explosion of volatility due to the Global financial crisis. The Eurozone
crisis starts around the end of 2009, exacerbates in mid-2010 with Greece being on the verge
of a default, and abruptly peaks around mid 2011 and early 2012 (depending on the country).
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Figure 1. Returns on 10-year bond for 10 Eurozone countries, 1999m1-2012m12. The data are
expressed as spreads from the 10-year yield of the German bund, and then standardized

(mean zero, variance one) in order to be of comparable scale.

While the relevant literature either identifies one factor or two factors, i.e. a so-called
“core” factor (Austria, Belgium, Finland, France, Netherlands) and a “periphery” factor (GI-
IPS), we prefer to adopt a single-factor approach in order to focus on the properties of dif-
ferent estimators without having to worry for the moment about uncertainty regarding the
number of factors11. What is more important here is that we are dealing with a nonstationary
dataset. Despite having a variable expressed as a spread, the time-series process is explosive.
Interestingly this implies that simple principal component analysis in nonstationary data is
equivalent to estimating a sample mean: indeed, with few exceptions, the loadings of the
first principal component from this dataset, degenerate to 1, thus implying that the PC is an
equally weighted average. Maximum likelihood estimation of the factor model can provide
a possibly more accurate solution in this case, and assign varying weights to the estimate of
the factor.

Therefore, we estimate the TVP-DFM using the two recursive estimators we have pro-
posed in this paper, and we contrast these to MCMC estimation of the TVP-DFM with ran-
dom walk stochastic volatility of the form introduced in Kim, Shephard and Chib (1998). For
the purpose of forecasting we are also estimating using MCMC a time-invariant DFM with
diffuse priors. The reader is referred to the Appendix for details regarding specification and
estimation of the TVP-DFM with stochastic volatility, and the simple, constant parameter
DFM. In the Appendix we also make an additional empirical assessment of the accuracy of
the different methods in recovering the time-varying volatilities and the factors. What we
present here analytically is the settings we have used for each model. We do that in Table XX,

11While the tradition is to choose the number of factors using some criterion, the Bayesian forecaster can simply
use a model selection prior (e.g. SSVS), a shrinkage priors (e.g. Bayesian LASSO), or a model averaging prior
(Zellner’s g-prior); see Koop and Korobilis (2010) for more details of priors and acronyms.
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where the reader can see that wherever possible we are using diffuse priors, plus we are us-
ing the same priors (initial conditions) for all parameters which are common among different
model specifications.

Table XX. Initial conditions and priors used in different models
TVP-DFM

Parameter 2S-EWMA 2S-WMD MCMC
λt λ0 � N (0, 4� I)a

βt β0 � N (0, 1� I)a

ft f0 � N (0, 4� I)a

Rt FF with µ1 = 0.99a

Wt FF with µ2 = 0.99a

Vt V0,i � 0.1b V0,i � IW (I, 1+ 2)c,b log (V0,i) � N (log (0.5) , 0)b

Qt Q0 � 0.1 Q0 � IW (I, k+ 2)c log (Q0) � N (log (0.5) , 0)
DFM

Parameter MCMC
λ λ � N (0, 4� I)
β β � N (0, 1� I)
ft f0 � N (0, 4� I)
V Vi � IG (0.01, 0.01)b

Q Q � IG (0.01, 0.01)
aThese coefficients are common in all three specifications of the TVP-DFM
bV0,i (similarly, Vi) denotes the i-th diagonal element of Vt (similarly, V), i = 1, ..., 10.
cThe IW for a univariate variable is equivalent to the Inverse Gamma (IG) distribution.

What we need to keep from this Table is that the major differences in the three estimators
of the TVP-DFM occur in the specification of the volatility. For these parameters we can be
fairly noninformative when using the Wishart matrix discounting method (2S-WMD), but we
have to be very informative for the other two methods. For the EWMA specification of Vt
and Qt our prior (initial condition) is informative, since it is just a scalar initial value. For
the MCMC estimation we can define a starting value from the Normal distribution, however,
for identification reasons we have to normalize12 the volatilities to start from a fixed point
which explains why our prior variance is zero. We need also to note that for identification
of the factors we normalize the first element of λt to be 1 (and, hence, not time-varying);
see Del Negro and Otrok (2008) for an explanation why such restrictions are needed. In the
2S-EWMA and 2S-WMD specifications, according to our discussion in Section XX, we need
not use any normalization or identification restrictions to obtain the common factor so that
estimation and numerical converegence is always guaranteed.

Regarding the forecast evaluation using the three estimation methods of the TVP-DFM,
we calculate posterior predictive likelihoods13 which means that we need to use posterior

12For forecasting we presumably can ignore identification issues (at least, when we are referring to identi-
fication of the factors), however, allowing less informative priors for the log-volatilities can have catastrophic
consequences for forecast uncertainty.

13The posterior predictive likelihood is obtained by evaluating the whole predictive density obtained from
each model, at the out-of-sample observation of interest. This is a measure which takes into account both the
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simulation (Monte Carlo) to obtain samples from the predictive density. Note that with the
MCMC we have by definition Monte Carlo samples from the posterior of all parameters, and
eventually the predictive density. The esitmated predictive likelihoods are presented in Table
X below. These are quoted relative to the predictive likelihood of a Bayesian time-invariant
DFM estimated using diffuse (noninformative) priors.

Table X. Relative PL’s for the bond yield data
h = 1 h = 3 h = 6 h = 9 h = 12

2S-EWMA
Austria 1.05 1.00 0.89 0.77 0.74
Belgium 0.90 0.86 0.89 0.82 0.80
Finland 1.03 0.95 0.93 0.86 0.80
France 1.17 1.15 1.05 1.09 1.01
Greece 1.85 1.79 1.73 1.86 1.88
Ireland 1.45 1.09 0.95 0.85 0.77
Italy 2.90 2.81 3.03 4.62 4.20
Netherlands 0.95 0.89 0.92 0.81 0.76
Portugal 1.04 1.05 1.22 1.13 1.16
Spain 1.17 1.01 0.90 0.81 0.78

2S-WMD
Austria 1.17 1.08 0.98 0.88 0.82
Belgium 0.95 0.91 0.96 0.89 0.86
Finland 1.19 1.05 1.01 0.89 0.85
France 1.17 1.17 1.10 1.19 1.08
Greece 1.91 1.98 1.93 1.82 1.52
Ireland 1.53 1.15 0.98 0.91 0.83
Italy 3.41 3.08 3.18 5.07 4.64
Netherlands 1.06 0.98 1.03 0.87 0.81
Portugal 1.05 1.00 1.16 1.14 1.15
Spain 1.29 1.10 0.99 0.89 0.87

MCMC
Austria 1.32 1.15 0.99 0.91 0.84
Belgium 1.04 0.95 0.96 0.92 0.87
Finland 1.20 1.02 0.91 0.77 0.79
France 1.13 1.16 1.06 1.14 1.05
Greece 2.79 2.67 2.55 2.43 1.86
Ireland 1.82 1.28 1.09 0.95 0.84
Italy 2.11 1.99 2.11 3.03 2.87
Netherlands 0.90 0.88 0.95 0.86 0.82
Portugal 0.97 0.97 1.12 1.06 1.12
Spain 1.22 1.02 0.95 0.84 0.83

From the table above we can make the following observations

accuracy of forecasts of the mean, as well as the total forecast uncertainty; see for example CITE. This should not
be comfused with the prior predictive (marginal) likelihood which is an in-sample measure of fit.
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1. There is a strong case for using a DFM with structural instabilities for the Eurozone data,
compared to a constant parameter DFM. Short-run predictability is greatly improved by
the presence of stochastic volatility and time-variation in loadings and VAR coefficients.
This is more evident, as one would expect, for countries in the periphery such as Italy
and Greece.

2. Our proposed estimation methods compare as well in achieving similar predictive like-
lihoods to MCMC. In some cases the TVP-DFMs we have estimated with the two-step
algorithms have lower PLs than MCMC, but in a several cases they improve the fit of
the model a lot (e.g. in the case of Italy for the 2S-WMD algorithm).

3. We should also consider in this evaluation that the Monte Carlo versions of our two-step
algorithms are several times faster than MCMC.14 Additionally, we haven’t imposed
any identification restrictions to obtain our results. This is not the case for the MCMC
algorithm, where identification is far more challenging. More discussion on this is pro-
vided in Appendix B.

4. Our algorithms can also be extended in several directions. For example, the results
above suggest that for some countries (e.g. Belgium) a TVP-DFM might not be appro-
priate, and one might be better-off with a constant parameter DFM. Similar results have
been found in the macro-finance literature, e.g. Sims and Zha (2006) show that the op-
timal specification for a monetary VAR is one that allows coefficients to change only in
the interest rate equation (and be constant in the other equations in their system). If we
allow each DFM equation to have a different forgetting factor for λt, that is, if we make
µ1 a diagonal matrix instead of a scalar, we can allow some countries to have constant
loadings while others to have time-varying.

5. In a similar spirit, one can optimize the model in terms of all the forgetting and decay
factors used. Windle and Carvalho (2013) use a Metropolis-Hastings step to optimize
the respective decay factors in their model, however, adopting such an approach means
that we lose the simplicitly of using our two-step approach and we instead have to adopt
a more complex MCMC scheme in order to obtain the EWMA and WMD estimates.
Koop and Korobilis (2013) and Dangl and Halling (2012) use an alternative method
where they define a grid of values for their decay/forgetting factors, and they chose as
the optimal model the one that maximizes the time t predictive likelihood.

There several such extensions along the lines of points 4 and 5 above, which could be
exciting ideas for future research. In this paper we avoid to go in such depths, as our purpose
is to establish that the proposed algorithms work with a minimal amount of tunning. For
example, if we optimize with respect to the forgetting/decay factors, then it is not clear if the
benefits of our estimation approach come from the simplicity of the algorithm or because of
the fact that we are taking into account uncertainty about the amount of time variation in the
DFM system.

14Exact times depends on the programming language, machine hardware, and number of Monte Carlo itera-
tions. Indicatively we mention here that it takes exactly 1/5 of the time to obtain 5,000 iterations from the 2S-WMD
algorithm compared to the MCMC algorithm (in a PC with “typical” specifications, i.e. a Core i7 4770K machine,
running Windows 7 with MATLAB 2013a 64-bit installed).
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6 Conclusions

In this paper, we develop fast and efficient Bayesian estimation algorithms for dynamic factor
models with time-varying coefficients and stochastic volatilities. The models can be estimated
on large macroeconomic datasets and are well-suited for real-time monitoring and forecast-
ing. We propose two variants of the estimation procedure: One algorithm can approximate
the posterior mean and tackle very large data sets, and the second algorithm samples from
the full joint parameter posteriors, is therefore computationally a bit more demanding and
thus suited for medium-sized data sets.

In simulations, we show that our proposed algorithms are fast and accurate in the pres-
ence of structural breaks. We also carry out two forecasting exercises to illustrate the prop-
erties of the estiamtors further: The first exercise aims at forecasting German GDP growth
recursively given a dataset of more than hundred time series. The other exercise addresses
the predictablity of government bond spreads in the Euro area countries. Both exercises cover
the recent period as evaluation period, a period which was subject to severe financial turbu-
lences and a an unprecedented break-down in real economic activity. In these periods, we
can show considerable advantages of the time-varying model in forecast performance over
models, which do not allow for structural instabilities.
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A. Technical Appendix

Consider the state space model of the form

yt = Htxt + vt,
xt = xt�1 + wt,

where the noise processes vt and wt are white, zero-mean, uncorrelated, and have covariance
matrices Σt and Ωt, respectively. Here we use a notation where the discount (forgetting) factor
of Ωt is λ, and the discount (decay) factor of Σt is δ. In the next two subsections we show how
to obtain an estimate the state xt when Σt is known (EWMA estimator) or unknown (inverse
Wishart process estimator). Therefore, the filters/smoothers presented below can be used to
compute the first step of both algorithms suggested in the text, that is for estimation of the
time-varying parameters of λt and βt. The second step in both algorithms (estimation of the
factors ft) is always based on the typical Kalman filter/smoother recursions; see for example
Durbin and Koopman (2001).

A.1 Kalman filter and smoother with covariance discounting

For chosen initial conditions x0, P0, Σ0 and discounting factors λ, δ, and given fixed values for
the system matrices Ht for all t, the algorithm for updating the unkown state xt along with
the unknown covariances Σt, Ωt, is as follows

Kalman-EWMA filter
For t = 1, ..., T run the following recursions

xtjt�1 = xt�1jt�1, predicted mean

Ωt =
�

λ�1 � 1
�

Pt�1jt�1, forgetting step

Ptjt�1 = Pt�1jt�1 +Ωt, predicted covarianceevt =
�
yt � Htxtjt�1

�
, measurement innovation

Σtjt = δΣt�1jt�1 + (1� δ) evtev0t, EWMA covariance estimate

Kt = Ptjt�1x0t
�
Σt + xtPtjt�1x0t

��1 , Kalman gain

xtjt = xtjt�1 + Ktevt, updated mean

Ptjt = Ptjt�1 � KtxtPtjt�1. updated covariance

Fixed interval smoother
Given xT and PTjT from the last run of the Kalman filter, the fixed interval smoother for

xtjt+1, t = T � 1, ..., 1, is as follows

xtjt+1 = xtjt +Ux
t
�
xt+1jt+1 � xt+1jt

�
,

Ptjt+1 = Ptjt +Ux
t
�

Pt+1jt+1 � Pt+1jt
�

Ux0
t ,

Ux
t = Ptjt

�
Pt+1jt

��1 .
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A.2 Sequential Bayes learning with covariance discounting

Given the initial conditions

x0 � N (x0, P0) ,
Σ0 � iW (S0, n0) ,

the time t priors of xt, Σt are

xtjyt�1 � N
�
xtjt�1, Ptjt�1

�
,

Σtjyt�1 � iW
�
Stjt�1, ntjt�1

�
,

where xtjt�1 = xt�1jt�1, Ptjt�1 = Pt�1jt�1 +Ωt, Ωt =
�

λ�1 � 1
�

Pt�1jt�1,, Stjt�1 = St�1jt�1, and
ntjt�1 = δnt�1jt�1.

Given these priors, the joint time t posterior of xt, Σt is of the form

xt, Σtjyt � NIW
�

xtjt, Pλ
tjt, Stjt, ntjt

�
,

where xtjt = xtjt�1+ Ptjt�1HtΞ�1
t eεt and Ptjt = Ptjt�1 � Ptjt�1H0

tΞ
�1
t HtPtjt�1, with eεt = yt �

Htxtjt�1 the innovation error of the Kalman filter and Ξt = HtPtjt�1H0
t + Σt its covariance ma-

trix. Additionally, we have that ntjt = δnt�1jt�1+ 1 and Stjt = (1� at) St�1jt�1+ at

h
S1/2

t�1jt�1Ξ�1/2
t�1 (εtε

0
t)Ξ�1/2

t�1 S1/2
t�1jt�1

i
,

with at = n�1
t and Ξt�1 = Σt�1 + Ht�1Pt�1jt�1H0

t�1; see also Triantafyllopoulos (2007).
In order to sample from xt and Σt we use a Monte Carlo scheme that allows us to sample

sequentially from Σtjyt and xtjΣt, yt. However, as we iterate forward over time we also need
to iterate backwards to obtain smoothed estimates. Therefore, we first get a draw from Σtjyt

by running the filtering and smoothing recursions, and then we obtain xtjΣt, yt using also
filtering and smoothing recursions. In particular, for s = 1, ..., S samples from the posterior of
the parameters of interest, we iterate over the following equations

� Obtain a sample Σt by generating a draw from

Σ(s)t jyt � iW
�
StjT, ntjT

�
. (A.1)

In order to obtain StjT, ntjT where we first run the forward recursions for t = 1, ..., T and
estimate

i) ntjt = δnt�1jt�1+ 1 and Stjt = (1� at) St�1jt�1+ at

h
S1/2

t�1jt�1Ξ�1/2
t�1 εtε

0
tΞ
�1/2
t�1 S1/2

t�1jt�1

i
.

and then run the backward recursions for t = T � 1, ..., 1 and estimate

ii) ntjT = (1� δ) ntjt + δnt+1jT and S�1
tjT = (1� δ) S�1

tjt + δS�1
t+1jT

� Obtain a sample xt by generating a draw from

x(s)t jΣ
(s)
t , ys � N

�
xtjT, PtjT

�
. (A.2)

In a similar fashion, we first run the forward Kalman filter iterations for t = 1, ..., T and
obtain
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i) xtjt = xtjt�1+ Ptjt�1Ht

�
Ξ(s)t

��1eεt and Ptjt = Ptjt�1 � Ptjt�1H0
t

�
Ξ(s)t

��1
HtPtjt�1

where now Ξ(s)t = HtPtjt�1H0
t + Σ(s)t .

Subsequently we can run the backward Kalman filter recursions to obtain

ii) xtjt+1 = xtjt+Ux
t
�
xt+1jt+1 � xt+1jt

�
and Ptjt+1 = Ptjt+Ux

t
�

Pt+1jt+1 � Pt+1jt
�

Ux0
t ,where

Ux
t = Ptjt

�
Pt+1jt

��1.

This sampling procedure makes it trivial to analyze (nonlinear) features of the parameter
posteriors (e.g. impulse response functions, or posterior predictive likelihoods), since we can
simply then use Monte Carlo Integration; see Koop (2003) for details.

Subseuently, in our second algorithm we use equation (A.1) to sample Vt and Qt, and
equation (A.2) to sample λt and βt, given their conditional state-space forms. Note that Vt is
diagonal so one can either use the posterior expression (A.1) using the restriction that Stjt and
StjT are diagonal matrices, or sample each diagonal element of Vt from equivalent univariate
inverse Gamma posterior; see West and Harrison (1997) for more details.

B. Additional results

In this section we present evidence on the way our estimation algorithms fit patterns in the
data. For the Eurozone bond spreads data we present estimates of the volatilities and factors
that pertain to the full sample 1999:M1-2012:M12. Figures B1-B3 present estimates of the
idiosyncratic volatilities for each of the 10 countries in the data, which can be found along the
main diagonal of the time-varying covariance matrix Vt. Figure B1 corresponds to EWMA
point estimates, while Figures B2 and B3 correspond to WMD and MCMC (Gibbs sampler
- see Del Negro and Otrok, 2008, for computational details) where posterior medians (solid
line) with the 16th and 84th quantile are plotted. These plots of the volatilities show the part
of our model which is not due to comovents captured in the common component λt ft, rather
they are attributed to the individual characteristics of each country (in the error term εt). This
explains why for the peripheral countries (Greece, Italy, Ireland, Portugal, Spain) there is a
large part of unexplained volatility15 during the Eurozone crisis 2010-2012, while for core
countries (Austria, Belgium, Finland, France, Netherlands) the major spikes in their volatility
occurs both during the Eurozone crisis and during the Global crisis 2007-2009

15This “unexplained volatility” could potentially be explained by macroeconomic fundamentals such as the
debt-to-gdp ratio, but is definitely not due to comovements among Eurozone countries
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Figure B1. Idiosyncratic volatilities for each of the 10 countries in our dataset. Solid lines are
posterior means/medians.
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Figure B2. Idiosyncratic volatilities for each of the 10 countries in our dataset, WMD
two-step estimates. Solid lines are posterior medians, and shaded areas are 16th/84th

quantile range.
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Figure B3. Idiosyncratic volatilities for each of the 10 countries in our dataset, MCMC
estimates. Solid lines are posterior medians, and shaded areas are 16th/84th quantile range.

Regarding the estimates of these volatilities, the similarity between the approximate two-
step approaches and the “exact” MCMC approach16 is striking.

16Note that even MCMC methods are Monte Carlo methods to approximate the exact posterior distribution, so
they might also be subject to an approximation error.
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