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Abstract

We investigate the information theoretic optimality properties of the score

function of the predictive likelihood as a device to update parameters in

observation driven time-varying parameter models. The results provide

a new theoretical justification for the class of generalized autoregressive

score models, which covers the GARCH model as a special case. Our

main contribution is to show that only parameter updates based on the

score always reduce the local Kullback-Leibler divergence between the true

conditional density and the model implied conditional density. This result

holds irrespective of the severity of model misspecification. We also show

that the use of the score leads to a considerably smaller global Kullback-

Leibler divergence in empirically relevant settings. We illustrate the theory

with an application to time-varying volatility models. We show that the

reduction in Kullback-Leibler divergence across a range of different settings

can be substantial in comparison to updates based on for example squared

lagged observations.

1 Introduction

We provide the information theoretic optimality properties of a class of obser-

vation driven time-varying parameter models. The main distinguishing feature
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of our model class is the use of the score function of the conditional (or the

predictive) observation density to drive the changes of the parameters over time;

see Creal, Koopman, and Lucas (2008, 2013) and Harvey (2013). Score driven

models have been successfully applied in various empirical studies; see Appendix

A for a short literature review. Furthermore, the score driven class of models

encompasses many familiar observation driven time-varying parameter models

such as the generalized autoregressive conditional heteroskedasticity (GARCH)

model of Engle (1982) and Bollerslev (1986), the autoregressive conditional du-

ration model of Engle and Russell (1998), the multiplicative error model of Engle

(2002), and also the observation driven Poisson count model of Davis, Dunsmuir,

and Streett (2003).

Despite the widespread use of these models, no firm theoretical foundation

has currently been provided for the use of the score as a driving mechanism of the

dynamics in observation driven time-varying parameter models. This paper aims

to provide such a formal justification using an information theoretic perspective

based on the Kullback-Leibler (KL) divergence. The KL divergence was first

introduced by Kullback and Leibler (1951) as a measure of divergence between

probability distributions, a work pioneered by Boltzmann in the 1870’s with his

concept of entropy in physics and thermodynamics. This work was extended

by Shannon (1948). The importance of the KL divergence became increasingly

clear when researchers started to uncover its key role in Fisher’s information and

sufficient statistics (Kullback, 1959), the maximum likelihood principle (Akaike,

1973), Laplace’s principle of insufficient reason (Jaynes, 2003), the minimum

discrimination principle or the principle of maximum entropy (Jaynes, 1957).

Kapur and Kesavan (1992) and Cover and Thomas (1991) provide textbook

treatments of applications in applied sciences. Maasoumi (1986) and Ullah (1996,

2002) review econometric applications. Given its fundamental and central place

in information theory, machine learning, econometrics, statistical mechanics and

many other fields, the KL divergence emerges as a natural starting point to

develop a theoretical motivation for the use of the score function in observation
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driven time series models.

To illustrate our objective, consider a (possibly multivariate) stochastic pro-

cess {yt}t∈Z characterized by a true conditional density yt ∼ p(yt|ft), where the

unobserved time-varying parameter ft is assumed to represent all dynamic fea-

tures of yt. For example, the time-varying variable ft can represent a volatility,

intensity, correlation, or copula dependence parameter. We postulate a statis-

tical model that is characterized by a possibly misspecified conditional density

p̃( · |f̃t; θ) to approximate the true conditional density p( · |ft), where f̃t is a fil-

tered estimate of the true ft, and θ ∈ Θ is a static, unknown parameter vector.

For example, f̃t may be the filtered volatility estimate from a GARCH model

with a Student’s t conditional density p̃( · |f̃t; θ), while ft is the log volatility from

a stochastic volatility (SV) model for a normal conditional density p( · |ft); see,

for example, Shephard (2005) for formulations of an SV model. A key feature of

the predictive score modeling framework is that the dynamics of f̃t are driven by

scaled versions of the score ∂ ln p̃(yt|f̃t; θ)/∂f̃t, i.e., the derivative of the postu-

lated log conditional observation density. For example, if p̃( · |f̃t; θ) is the normal

density with mean zero and variance f̃t and the score is scaled by the inverse

conditional Fisher information, we recover the familiar GARCH model of Engle

(1982) and Bollerslev (1986). If, however, p̃( · |f̃t; θ) is a Student’s t density,

we do not recover the t-GARCH model of Bollerslev (1986), but an observation

driven model for a time-varying variance with more robust properties than the

t-GARCH model; see Creal et al. (2013) and Harvey (2013) for further details.

In this paper we refer to our class of predictive score driven time-varying

parameter models as the generalized autoregressive score (GAS) model. We

show that the parameter update in the GAS model is successful in reducing the

Kullback-Leibler divergence between the true conditional density p(yt|ft) and

the model implied conditional density p̃(yt|f̃t; θ). In particular, the theoretical

results in this paper reveal that the score is successful in ensuring that the GAS

update reduces the KL divergence in expectation and at every step. Furthermore,

we show that only score-driven updates can have this property. Since the score
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makes use of ‘local information’ about the likelihood, the theory focuses naturally

on ‘local updates’. However, we show numerically that the optimality properties

of the GAS hold more generally, even when large updates are present. All findings

apply to correctly specified models as well as misspecified models.

Other arguments for the use of the score function in dynamic models have

been proposed earlier in the filtering literature. For example, Masreliez (1975),

Durbin and Koopman (1997) and Müller and Petalas (2010) motivate the use

of the score for filtering based on a Laplace approximation of the postulated

parametric observation density in the state space framework. The scores are then

used to build an approximating linear Gaussian state space model for the efficient

estimation of dynamic parameters via the Kalman filter, possibly combined with

importance sampling techniques; see Durbin and Koopman (2012) for a recent

textbook treatment. Another argument is found in Nelson and Foster (1994).

Using fill-in asymptotics and a near-diffusion framework, they show that filters

based on the score of the observation density are optimal in a mean-squared-

error sense when estimating the true, unobserved ft. Compared to this earlier

literature, our paper takes the perspective of optimality from an information

theoretic point of view. Information theoretic arguments provide one of the

common benchmarks for most econometricians and statisticians by which to

assess the statistical adequacy of alternative procedures.

The remainder of this paper is organized in the following way. In Section 2,

we introduce the main concepts and definitions used to evaluate the information

theoretic properties of the GAS updating scheme. In Section 3, we formulate the

key propositions that establish the local and global optimality of GAS updates.

In Section 4, we provide some illustrative examples for time-varying volatility

models to highlight the main aspects of our theoretical results. We conclude in

Section 5. Appendix A provides a short empirical literature review on predictive

score driven time-varying parameter models while Appendix B gathers the proofs.
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2 Notation and optimality concepts

We consider a stochastic process {yt}t∈Z with elements taking values in Y ⊆ R.

The process is characterized by a true conditional density yt ∼ p(yt|ft), where

ft ∈ F ⊂ R is unobserved. We observe a given sequence of T observations,

yT := {yt}Tt=1, and consider the statistical model given by

yt ∼ p̃(yt|f̃t; θ), (1)

f̃t+1 = φ
(
f̃t, yt ; θ

)
, (2)

where p̃(·|f̃t; θ) is a parametric conditional density, f̃t ∈ F̃ ⊂ R is a filtered

value of the true ft, θ ∈ Θ is a vector of static, unknown parameters, and φ

is an updating function linking the new f̃t+1 to the current observation yt and

the current filtered time-varying parameter f̃t. The model in equations (1)–(2)

implies that we adopt an observation driven approach in our statistical analysis;

see Cox (1981) for a detailed description. In particular, we assume that f̃t is a

measurable function of yt−1 and θ, i.e., f̃t = f̃t(yt−1,θ, f̄1) for some initial value

f̄1. For example, in the familiar GARCH setting, φ takes the form φ(f̃t, yt; θ) =

ω∗ + α∗y2
t + β∗f̃t for a fixed unknown parameter vector θ = (ω∗, α∗, β∗)′.

The approximation of p( · |ft) by p̃( · |f̃t) in (1) is two-fold, as it relates to

the shape of the density function itself as well as to the filtered time-varying

parameter f̃t. Both features may possibly depend on the parameter vector θ,

which needs to be estimated. The estimation of θ is therefore another key part

of our analysis.

The generalized autoregressive score (GAS) framework also falls in the class

defined by equations (1)–(2). The defining property of GAS models is the use

of the score in updating f̃t to f̃t+1. For example, for a first order autoregressive
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scheme the GAS model is given by

f̃t+1 = φ
(
f̃t, yt ; θ

)
= ω + α · St · ∇̃t + βf̃t, (3)

∇̃t := ∇̃
(
f̃t, yt ; θ

)
= ∂ log p̃

(
yt
∣∣∣f ; θ

)
/∂f

∣∣∣
f=f̃t

, (4)

where St := S(f̃t; θ) is a positive scaling function that possibly depends on the

filtered time-varying parameter f̃t and the static parameter θ. For example, Creal

et al. (2013) propose to scale by powers of the conditional Fisher information to

account for the curvature of the score function. We assume throughout this paper

that p̃(·|f̃) is continuously differentiable in f̃ ∈ F̃ , and that the score function

∇̃t in (4) is continuously differentiable in both f̃t and yt. We further assume that

f̃t+1 is a continuous random variable that has a density, such that the model does

not degenerate; see, for example, Blasques et al. (2012, 2014) for more precise

conditions on the stationarity and ergodicity of f̃t.

The key objective of our study is to characterize functions φ that possess

optimality properties from an information theoretic point of view. To achieve

this objective, we first define a number of relevant optimality properties that we

analyze in more detail below.

Given a true unobserved sequence {ft} and an approximate filtered sequence

{f̃t} = {f̃t(yt−1,θ, f̄1)}, the optimal information-theoretic update of f̃t to a new

value f̃t+1 minimizes the Kullback-Leibler (KL) divergence between the true

conditional density pt := p( · |ft) and the postulated density p̃t+1 := p̃( · |f̃t+1; θ).

The KL distance is then defined as

DKL
(
pt , p̃t+1

)
=
∫
Y
p(y|ft) ln p(y|ft)

p̃(y|f̃t+1; θ)
dy, (5)

where Y ⊆ R is the subset of the real line over which the divergence is evaluated.

Selecting Y to be a small neighborhood of a point yields a local KL-divergence

as found, for example, in Hjort and Jones (1996) and Ullah (2002). In these

contributions, local ML estimation is related to the minimization of the local KL

divergence or the maximization of the local Shannon entropy. If Y = R, then
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DKL corresponds to global KL divergence of Kullback and Leibler (1951).

The DKL optimality concept follows from the principle of Minimum Discrim-

ination Information (MDI) proposed by Kullback (1959). When a new observa-

tion yt becomes available, we choose f̃t+1 such that the updated density p̃t+1 is

as hard to discriminate over the domain Y from the true density pt as possible.

In other words, the new observation should produce as small an information gain

DKL(pt, p̃t+1) in (5) as possible. The KL distance in (5) can also be expressed as

DKL
(
pt, p̃t+1

)
=
∫
Y
p(y|ft) ln p(y|ft) dy −

∫
Y
p(y|ft) ln p̃(y|f̃t+1; θ) dy, (6)

where the first term on the right-hand side of (6) corresponds to the information

entropy of the true density pt, and where the second term corresponds to the

cross entropy between the true density pt and the approximate density p̃t+1.

Minimizing the KL divergence thus corresponds to maximizing the cross entropy.

The most natural optimality concept that arises from the KL divergence is

one that defines a parameter update as optimal if it minimizes the KL divergence

between the true conditional density pt and the modeled conditional density p̃t+1,

f̃t+1 ∈ arg min
f∈F
DKL

(
pt , p̃( · |f ; θ)

)
. (7)

However, we can only apply this concept of optimality when the conditional

density p is known and the sequence {ft} is observed. In empirical work, this

concept is infeasible in most situations of practical interest. Therefore, we turn

to alternative notions of optimality that (i) can be applied in empirical settings

where the data generating process (DGP) is unknown, (ii) can provide an im-

portant characterization of any observation driven parameter updating scheme,

and (iii) can build on the solid foundations of KL optimality as discussed above.

An important notion of optimality that satisfies the above criteria focuses on

the improvement that the updating step produces in terms of the KL divergence

from the true conditional density. In particular, given a starting point for the

filtered parameter f̃t and a conditional density p̃(·|f̃t), we analyze the conditions
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Figure 1: A graphical representation of first-order optimality under model mis-
specification. The shaded area denotes the set of conditional densities generated
by the model.

under which the new observation yt, drawn from p(·|ft), produces an update

from f̃t to f̃t+1 such that the new conditional density p̃(·|f̃t+1) provides a better

approximation to p(·|ft) than p̃(·|f̃t). Hence we focus on the change in KL

divergence resulting from updating the time-varying parameter from a point

f̃t ∈ F̃ to another point f̃t+1 ∈ F̃ . We call this change the realized KL variation.

Definition 1. (RKL Optimality) The realized KL (RKL) variation of a param-

eter update from f̃t ∈ F̃ to f̃t+1 ∈ F̃ is given by

∆t|t = DKL
(
pt, p̃t+1

)
−DKL

(
pt, p̃t

)
=
∫
Y
p(y|ft)

(
ln p̃(y|f̃t; θ)− ln p̃(y|f̃t+1)

)
dy.

For a given pt, a parameter update is RKL optimal if and only if ∆t|t < 0.

The KL divergences in the definition of ∆t|t are both taken with respect to

the same unknown density pt ≡ p(yt|ft) because the realized observation yt, used

in updating p̃t to p̃t+1, is drawn from pt. In other words, starting from p̃t, the

observation driven update can only use the draw from pt to approximate pt itself

more accurately. Figure 1 illustrates, in a graphical way, a realized update that

is KLV optimal despite model misspecification.

In a dynamic system that is subject to stochastic perturbations, it is not

always possible to ensure that the realized step is optimal. The GAS update is no

exception. For example, in a time-varying volatility model, it is conceivable that

an outlier materializes in a period when the true volatility has gone down. From

an inferential perspective, however, the outlying observation naturally leads to an
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increase in our volatility estimate. This is inherently difficult to avoid. However,

an optimal updating scheme, while being subject to stochastic perturbations,

should have a tendency to move in the ‘correct direction’ on average in the sense

of the KL divergence reducing in expectation. For this purpose we introduce the

concept of conditionally expected KL optimality.

Definition 2. (CKL Optimality) The conditionally expected KL (CKL) varia-

tion of a parameter update from f̃t ∈ F̃ to f̃t+1 ∈ F̃ is given by

∆t|t−1 =
∫
F
q(f̃t+1|f̃t, ft; θ)

[∫
Y
p(y|ft) ln p̃(y|f̃t; θ)

p̃(y|f̃t+1; θ)
dy
]
df̃t+1,

where q(f̃t+1|f̃t, ft; θ) denotes the density of f̃t+1 conditional on both f̃t and ft.

For a given pt, an update is CKL optimal if and only if ∆t|t−1 < 0.

Conditional on information available up to time t− 1, the filtered parameter

f̃t is known and fixed because f̃t ≡ f̃t(yt−1,θ, f̄1). The parameter f̃t+1 by contrast

is unknown and random because f̃t+1 ≡ f̃t+1(yt,θ, f̄1) depends on the unrealized

yt, which is random even for a given ft. The true unknown measure of yt plays a

role in the definition of CKL optimality through the conditional density p(y|ft)

in the inner integral, as well as through the conditional density q(f̃t+1|f̃t, ft; θ)

in the outer integral. Despite this dependence on the unknown true conditional

density and ft, we can still establish theoretical properties based on RKL and

CKL optimality.

3 Optimality of GAS updates

3.1 Local optimality of GAS updates

We first establish a number of analytical results for local optimality that hold

for every true density pt. Local results focus on the ‘direction’ of the updating

step. A locally optimal update must be in a correct direction, i.e., in a direction

that reduces the KL divergence.
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Our first results show that the updates from the GAS models are locally RKL

and CKL optimal for every pt. In particular, the optimality proofs show that

∆t−1|t−1 < 0 and ∆t|t−1 < 0 for every pt on a neighborhood f̃t and yt, respectively.

In other words, we show that ∃δf > 0 ∧ δy > 0 such that ∆t−1|t−1 < 0 and

∆t|t−1 < 0 holds for every pt on the sets of the form

F = Fδf (f̃t) := {f̃ ∈ F̃ : |f̃ − f̃t| < δf},

Y = Yδy(yt) := {y ∈ Y : |y − yt| < δy}.
(8)

The set Y may be chosen more effectively for particular models. For example,

in symmetric volatility models, we may want to use the distance between |y|

and |yt| so that our local optimality results hold for even a larger set of Y . We

abstract from such alternative choices of distances to avoid notational burden.

We require some regularity conditions on the support of the true conditional

density pt and the score of the postulated model ∇̃t. These conditions can be

relaxed easily at the cost of more complex notation and proofs; we mainly require

the existence of regions of positive measures for the observed data yt over which

the model score ∇̃t is well defined and non-zero.

Assumption 1. p(y|f) > 0 ∀ (y, f) ∈ R × F and ∇̃(f̃ , y; θ) 6= 0 for every

(f̃ ,θ) ∈ F̃ ×Θ and almost every y ∈ R.

Assumption 2. α > 0 and S(f̃ ; θ) > 0 ∀ (f̃ ,θ) ∈ F̃ ×Θ.

The first condition in Assumption 1 excludes those values of the time-varying

parameter that result in a distribution for yt that is degenerate. For example,

in the volatility models of Section 4, we exclude the possibility of the variance

becoming zero. The second condition in Assumption 1 rules out the possibility

of the time-varying parameter being non-identified at certain update steps. The

Assumption 2 imposes two trivial conditions that ensure that the GAS update

does not ‘ignore’ or ‘distort’ the information contained in the score.

Definition 3. (Newton-GAS update) The Newton-GAS update is defined as

(3) with ω = 0 and β = 1, from which we obtain f̃t+1 = f̃t + α∇̃t.
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The Newton-GAS update is our building block in the subsequent analysis. It

resembles the update in the numerical Newton algorithm using steepest ascent

steps.

Proposition 1. Let Assumptions 1 and 2 hold. Then, every Newton-GAS

update is locally RKL optimal and CKL optimal for any true density pt.

Proposition 1 above shows that the parameter restrictions α > 0 ∧ (ω, β) =

(0, 1) ensure that ∆t|t−1 < 0 and ∆t|t < 0 hold for every pt and every (f̃t+1, y) in

a neighborhood of (f̃t, yt). This result can be achieved because, locally, the sign

of the score indicates correctly whether the time-varying parameter should be

updated upwards or downwards. Proposition 2 below shows that the properties

derived above are only available for ‘score-equivalent’ updates. It establishes that

we require a fundamental sign condition for an update to achieve the results of

Proposition 1: the update must give exactly the same local information as the

score in the sense that their signs must be the same.

Definition 4. (Score-Equivalent Update) The observation driven parameter up-

date (2) is ‘score-equivalent’ if and only if sign(∆φ(f, y; θ)) = sign(∇̃(f, y; θ))

for almost every (y, f) ∈ Y × F and every θ.

Proposition 2. Let Assumptions 1 and 2 hold. For any given true density pt,

a parameter update is locally RKL optimal and CKL optimal if and only if the

parameter update is score-equivalent.

Proposition 2 underlines the importance of the score for KL related optimality

concepts. The property stated in the proposition, however, holds for a larger class

of GAS updates than just those driven purely by the score. In particular, we

allow (ω, β) 6= (0, 1) as long as the ‘force away’ from the optimal direction at f̃t,

which is determined by the autoregressive component ω + (β − 1)f̃t, is weaker

than the ‘force towards’ the optimal direction, which is determined by the score

component αS(f̃t; θ)∇̃(f̃t, yt; θ). Indeed, the optimality regions defined in our

next proposition reveal that, for any given f̃t = f̃ ∈ F̃ , both RKL and CKL
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optimality hold as long as α is larger than a multiple of ω + (β − 1)f̃ . This is

summarized in Proposition 3.

Proposition 3. Let Assumptions 1 and 2 hold. Then, the GAS update is locally

RKL optimal for every pt if

α >
|ω + (β − 1)f̃t|

S(f̃t; θ)|∇̃(f̃t, yt; θ)|
. (9)

The GAS update is locally CKL optimal for every pt if

α >
Et−1
Yf
|∇̃(f̃t, yt; θ)|

S(f̃t; θ)Et−1
Yf
|∇̃(f̃t, yt; θ)|2

|ω + (β − 1)f̃t|, (10)

with Et−1
Yf
|∇̃(f̃t, yt; θ)| =

∫
Yf
p(yt|ft) |∇̃(f̃t, y; θ)|dy and Yf := {y ∈ R : |φ(f̃t, y; θ)−

f̃t| < δf}.

The parameter restrictions in Proposition 3 show precisely how large α must

be for the score to have a ‘greater influence’ on the parameter update than the

autoregressive part. Equation (9) can be rewritten as

αS(f̃t; θ)|∇̃(f̃t, yt; θ)| > |ω + (β − 1)f̃t|,

and it shows directly that two forces play a role in local optimality. For any given

value of α, the larger the absolute value of the scaled score S(f̃t; θ)|∇̃(f̃t, yt; θ)|,

the more likely we have a realized step that is locally optimal. Similarly, the

closer ω is to zero or the closer β is to one, which corresponds to the Newton-

GAS update, the easier it is to obtain local optimality. For RKL optimality,

the intuition follows when taking an arbitrarily small value for δf in (8): the

change f̃t+1 − f̃t is then mainly driven by the score part, and by concentrating

on a small enough neighborhood F = Fδf (f̃t), the expression for RKL-variation

becomes (negative) quadratic.

Example 1. For the GAS volatility model with a normal distribution, we obtain

a model equivalent to the standard GARCH model. We can reduce equation (9)
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to α |y2
t − f̃t| > |ω + (β − 1)f̃t|, such that the update is convincingly more RKL

optimal if the observed y2
t deviates considerably from the filtered volatility f̃t.

The parameter restrictions for CKL optimality have a similar interpretation.

In particular, although the local conditional expectations in the parameter re-

striction (10) depend on the unknown conditional density pt, the condition is

valid for every conditional density pt because by Assumption 2 the denominator

cannot be zero. Hence the restriction in (10) imposes the required condition that

the optimality result holds for every pt.

3.2 Non-local optimality of GAS updates

In this section we extend the local results to a non-local setting. These results

are not only concerned with the direction of the updating step, but also, with

the size of the updating step. In other words, we characterize the step size for

which we can ensure optimality.

It is convenient to introduce notation for the local supremum of the partial

derivatives of the score ∇̃t,

ξδf ,δy
(
f̃t, yt

)
:= sup

(f,y)∈Fδf (f̃t)×Yδy (yt)

∣∣∣∣∂∇̃(f, y; θ)
∂f

∣∣∣∣ ,
ζδf ,δy

(
f̃t, yt

)
:= sup

(f,y)∈Fδf (f̃t)×Yδy (yt)

∣∣∣∣∂∇̃(f, y; θ)
∂y

∣∣∣∣.
In Proposition 1 we established the local optimality of the Newton-GAS update.

In Proposition 4 we show that the Newton-GAS is optimal on a larger set as long

as this set satisfies some size restrictions.

Proposition 4. Let Assumptions 1 and 2 hold. Then, the Newton-GAS update

is RKL optimal on sets Fδf (f̃t) and Yδy(yt) that satisfy

ηδf ,δy(f̃t, yt) < |∇̃(f̃t, yt; θ)|, (11)
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and CKL optimal on sets that satisfy

ηδf ,δy(f̃t, yt) <
Et−1
Yf
|∇̃(f̃t, yt; θ)|2

Et−1
Yf
|∇̃(f̃t, yt; θ)|

, (12)

where ηδf ,δy(f̃t, yt) := ξδf ,δy(f̃t, yt)× δf + ζδf ,δy(f̃t, yt)× δy.

Example 1 (continued). Consider the model yt = f̃tεt where εt comes from a

χ2(1) distribution. This model is again equivalent to the GARCH model with

normal disturbances, where we have taken the squares of both sides of the equa-

tion ỹt = f̃
1/2
t ε̃t, with yt = ỹ2

t and ε̃t ∼ N(0, 1). The GAS model with inverse

Fisher information scaling of the score is again equivalent to the GARCH(1,1).

We have f̃t+1 = ω+βf̃t+α(yt− f̃t) = ω+βf̃t+α(ỹ2
t − f̃t), and ξδf ,δy(f̃t, yt; θ) = 1

and ζδf ,δy(f̃t, yt; θ) = 1. Restriction (11) then takes the form δf + δy < |yt − f̃t|.

This region is thus larger if the observed yt is at odds with the last filtered

variance f̃t.

Example 2. If we consider the Student’s t GAS volatility model of Creal et al.

(2013) and Harvey (2013), the functions ξδf ,δy(f̃t, yt) and ζδf ,δy(f̃t, yt) are not

uniformly bounded. Restriction (11) takes the form

ξδf ,δy
(
f̃t, yt

)
× δf + ζδf ,δy

(
f̃t, yt

)
× δy <

∣∣∣1 + 3λ−1
∣∣∣ ∣∣∣∣∣ (1 + λ−1) y2

t

1 + λ−1y2
t /f̃t

− f̃t
∣∣∣∣∣ , (13)

where λ denotes the degrees of freedom parameter of the Student’s t distribution,

and both ξδf ,δy(f̃t, yt) and ζδf ,δy(f̃t, yt) are increasing in f̃t and decreasing in y2
t

and λ.

The optimality regions described above are obtained analytically from suf-

ficient conditions. In Section 4 we provide a numerical description of the true

optimality regions by dealing with a case where the DGP is known.

Finally, for general GAS updates with (ω, β) 6= (0, 1), we obtain the following

optimality result.
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Proposition 5. Let Assumptions 1 and 2 hold. Then, the GAS update is RKL

optimal on sets Fδf (f̃t) and Yδy(yt) that satisfy

αS(f̃t; θ) ∇̃(f̃t, yt; θ)2 >
(
ηδf ,δy

(
f̃t, yt

)
+
∣∣∣∇̃(f̃t, yt; θ)

∣∣∣) |ω + (β − 1)f̃t|+

αS(f̃t; θ) ηδf ,δy(f̃t, yt)
) ∣∣∣∇̃(f̃t, yt; θ)

∣∣∣, (14)

and CKL optimal on sets that satisfy

αS(f̃t; θ)Et−1
Yf
∇̃(f̃t, yt; θ)2 >

(
ηδf ,δy

(
f̃t, yt

)
+ Et−1

Yf

∣∣∣∇̃(f̃t, yt; θ)
∣∣∣) |ω + (β − 1)f̃t|+

αS(f̃t; θ) ηδf ,δy(f̃t, yt)Et−1
Yf

∣∣∣∇̃(f̃t, yt; θ)
∣∣∣.

Compared to the local results of Proposition 3 that assumed arbitrarily small

updating steps, the results of Proposition 5 allow the size of updating steps to be

larger, as long as the appropriate bounds are satisfied. Note that the conditions

in Proposition 5 collapse to those in Proposition 3 if ω = 0 and β = 1.

To conclude, we re-emphasize that the optimality regions derived in this

section are valid for any postulated conditional density p̃, regardless of the true

unknown DGP p. At the same time, however, all model density choices p̃ are

not the same. In order to minimize the KL divergence it is always preferable

to work with a model density that approximates the DGP best. Hence, a good

choice for the conditional density remains crucial. The current results only state

that for a given choice of model density, the dynamics of f̃t as driven by the

score of p̃ itself possess a number of information theoretic optimality properties.

Observation driven updates based on other mechanisms do not necessarily have

similar properties.

To make the last point more concrete, we consider three models in the

next section: a normal distribution p̃ and score based updates (i.e., the nor-

mal GARCH or GAS model), a Student’s t density p̃ with GARCH updates

(t-GARCH), and a Student’s t density with score updates (t-GAS). Both the

GARCH and t-GAS model are optimal in the sense defined in this section. For a

fat-tailed DGP, however, the non-optimal t-GARCH performs better in general
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than the ‘optimal’ normal GARCH model. The reason is that the Student’s t

density p̃ of the t-GARCH fits the fat-tailed DGP density p much better than

does the normal distribution of the normal GARCH model. However, given the

choice for the Student’s t model density p̃, the score based steps of the optimal

t-GAS model perform better in terms of KL reductions than the steps of the

t-GARCH model.

4 Application: volatility modeling

Due to their analytical nature, the results derived in Section 3 made use of

sufficient conditions that bound the size of the regions F and Y over which

we could ensure the optimality of the update for the time-varying parameter

estimate. Here we take a numerical perspective and illustrate our KL optimality

results for the stochastic volatility model. This allows us to numerically analyze

the shape of the true optimality regions. Furthermore, it allows us to calculate

KL divergences for F = Y = R, such that effectively we can focus on global

rather than local optimality in our numerical analysis. The illustration provides

insights into whether the gains by using the score are only local, or also applicable

for much larger regions of the sample and parameter space.

4.1 Observation driven approximations of the SV model

Time-varying volatility and fat tails are salient features in many financial time

series; see, amongst others, Bollerslev (1986). Therefore, in our simulations we

use a fat-tailed stochastic volatility (SV) model as a DGP, see e.g. Shephard

(2005) and Durbin and Koopman (2012) for formulations of such SV models.

We represent the DGP as

yt =
√
ftut, ut ∼ pu(ut;λ),

log ft = µ+ ρ log ft−1 + εt, εt ∼ NID(0, σ2
ε ),

(15)
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Model pu(ut, λ) Update Equation

GARCH N(0, 1) f̃t+1 = ω + α(y2
t − f̃t) + βf̃t

t-GARCH t(λ) f̃t+1 = ω + α(y2
t − f̃t) + βf̃t

t-GAS t(λ) f̃t+1 = ω + α(1 + 3λ̃)(wty2
t − f̃t) + βf̃t

Table 1: Update functions for GARCH, t-GARCH and t-GAS models where w−1
t = (1 −

2λ)(1 + λy2
t /[(1− 2λ)f̃t])/(1 + λ); see Creal et al. (2013) and Harvey (2013) for more detailed

discussions.

for t = 1, . . . , T , where T is the number of observations, ft represent the true

time-varying volatility, ut is the standardized innovation with its corresponding

Student’s t distribution pu( · ;λ) and degrees of freedom λ, and {εt} is an inde-

pendent normally distributed sequence with mean zero and constant variance σ2
ε .

We do not consider the leverage effect in our numerical example in this section

and assume that ut and εt are serially and mutually independent. The param-

eters of the SV model are set to empirically relevant values, µ = 0, ρ = 0.98,

σε = 0.065, and we let λ range from 3 to 8.

We consider three approximating observation driven models for (15): the

standard GARCH model, which coincides with the GAS volatility model based

on the normal distribution; the GARCH model with conditional Student’s t

distribution of Bollerslev (1986); and the GAS volatility model with conditional

Student’s t distribution of Creal et al. (2013) and Harvey (2013) as discussed

in Section 2. These models share a common observation equation yt =
√
f̃tut

but impose different distributions for the innovations and make use of different

updating equations for filtering the time-varying parameter f̃t. Table 1 below

offers establishes the notation.

To determine the pseudo-true parameter vector θ that provides the best pos-

sible approximation to the DGP (15) in terms of KL divergence, we simulate

a time series for yt of length T = 35, 000 and estimate the parameters of each

model and DGP by maximum likelihood (ML). The consistency and asymptotic

normality of the ML estimator to a pseudo-true parameter under model misspec-

ification is ensured by the results of Blasques et al. (2014). We have verified that
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for this large sample size the estimates of the pseudo-true values in do not change

substantially if we add more observations or if we use a different random seed

for simulation. All three observation driven models take f̃t as the squared scale

parameter of the Student’s t distribution. As a result, all models are misspeci-

fied in two dimensions: (i) the statistical models are observation driven, whereas

the DGP is parameter driven, and (ii) the DGP dynamics are in the log scale

parameter rather than in the squared scale parameter.

4.2 Estimation results

Figure 2 presents the estimation results. The strongest differences appear for the

fat-tailed distributions; these are the models with low values of λ.

Since both the GARCH and t-GARCH models are highly sensitive to outliers,

the pseudo-true α parameter tends to decrease as the true λ decreases and the

innovations become fatter tailed. In this way the pseudo-true α of both the

GARCH and t-GARCH model attempts to compensate for the fact that outliers

in yt produce spikes in the filtered volatility f̃t as the update equation uses y2
t

to drive the dynamics of f̃t. This effect is more noticeable in the t-GARCH

because the innovations are already fat tailed. In the case of the GARCH model,

the values of the pseudo-true parameters reflect also the misspecification in the

conditional density, which is normal instead of Student’s t. The GARCH pseudo-

true parameters are closer to those of the t-GARCH when the true λ is larger.

However, as the true λ decreases and the true density becomes fatter tailed, the

GARCH model can only overcome the misspecification of its implied conditional

density by changing its pseudo-parameters such that the GARCH filter produces

a higher volatility. For very low λ, this is achieved by having larger values for

the pseudo-true ω and α.

In comparison to the GARCHmodel, the t-GARCHmodel has a well specified

conditional density that allows for fat tails in the innovations. However, since

the t-GARCH uses y2
t to drive the dynamics of f̃t, the volatility update is still

very sensitive to outliers. In particular, when |yt| is very large, it causes a large
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Figure 2: The pseudo-true parameters for GARCH, t-GARCH and t-GAS models
using the stochastic volatility DGP (15) with a = 0, b = 0.98, σε = 0.065
and λ ∈ [3, 8]. The pseudo-true values are obtained by estimating each model
separately for each true value of λ by maximum likelihood on a simulated time
series of T = 35, 000 observations.

spike in the filtered volatility estimate. To minimize this effect, the pseudo-true

values for α are always decreasing in the true λ. However, a lower value of α in

the t-GARCH model comes at the cost of the filtered volatility being lower on

average and being unable to react to true increases of volatility. For very low

values of λ, the pseudo-true value of ω then rises to compensate for this defect.

The GAS model does not suffer from these parameter adjustments because

the impact of large yt’s, in absolute values, is downweighted in (13). As a result,

its pseudo-true parameters reveal greater stability throughout the range of λ. In

this sense, the GAS model is naturally more robust to outliers.

4.3 Kullback-Leibler divergence comparisons

In the left-hand panel of Figure 3 we present the relative difference in KL-

divergence of the t-GAS model to that of the GARCH and t-GARCH models.

Suppose that KL(G) denotes the KL divergence between the DGP measure and

the t-GAS model and KL(A) the KL divergence between the DGP and some

model A. Then the relative KL divergence plotted in Figure 3 is defined as

1−KL(G)/KL(A). The closer the curve is to zero, the more similar are the com-
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Figure 3: The left panel presents the relative KL divergences for t-GAS relative
to GARCH (solid curve) and to t-GARCH (dashed curve). The right panel
presents the corresponding relative mean squared error (RMSE) statistics. The
results are based on a simulated time series of length T = 35, 000 for ft and
yt and for each value of λ using the stochastic volatility DGP with a = 0.0,
b = 0.98, σε = 0.065.

peting models in terms of their KL divergence with respect to the DGP. If the

relative KL divergence approaches one, then this means that the t-GAS model

has an arbitrarily small KL divergence compared to the alternative model.

Figure 3 clearly underlines the superiority of the t-GAS update relative to

the GARCH and t-GARCH updates. The superiority of t-GAS in comparison

to GARCH is not surprising since the GARCH substantially misspecifies the

conditional distribution. More interesting is the comparison between the t-GAS

and t-GARCH models. In Figure 3 it becomes clearly visible that the score

based update yields 10% to 30% decrease in average KL-divergence compared

to the t-GARCH models with degrees of freedom in the empirically relevant

range of λ ∈ [3, 6]. If the conditional distribution is even more fat-tailed, the

improvements amount to almost 50%.

The same conclusions are obtained from the relative root mean squared errors

(RMSEs) which are displayed in the right-hand panel of Figure 3. The RMSEs

based on (f̃t − ft)2 can be computed since the fts are observed in our current

simulation setting. The relative improvements of the score based t-GAS steps vis-

à-vis the GARCH and the t-GARCH steps are substantial. We find improvements

with respect to the t-GARCH model of approximately 10% for λ = 6 and over

40% for λ = 3.
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Figure 4: The RKL variation and RKL optimality regions (regions with negative
RKL variation) from Definition 1 for t-GARCH (left-panel) and t-GAS (right-
panel) updates. The conditional density of yt given ft used in these pictures is
the standard Student’s t with λ = 3 degrees of freedom. The regions are plotted
for a given true ft ≈ 1.2.

4.4 Realized Kullback-Leibler variation

Figure 4 presents the realized KL (RKL) variation from Definition 1 for the

t-GARCH and t-GAS models. The RKL optimality regions correspond to the

areas with negative KL variation. In order to highlight the differences, the RKL

variation is plotted using the pseudo-true parameters of the two observation

driven models for the DGP with λ = 3. We plot the regions for a given true

ft ≈ 1.2 for a range of yt and f̃t that contains almost 99% of the mass of their

respective simulated paths.

Figure 4 shows that if f̃t is below the true value ft ≈ 1.2, then most of th

t-GARCH and t-GAS updates improve the KL divergence for large values of |yt|.

Large values of |yt| force f̃t to be updated upwards. By contrast, if f̃t is larger

than the true value ft ≈ 1.2, then only small values of |yt| make f̃t converge

downwards to its mean due to autoregressive dynamics of GARCH and GAS

models. However, Figure 4 also shows that the t-GARCH is much more sensitive

to large values of |yt|. Due to the form of the parameter update, large values of

|yt| lead to an increase of f̃t such that its approximation to the true density of

ft deteriorates significantly. For the GAS model, on the other hand, the effect

of yt on the update of f̃t is bounded. Hence, the GAS update achieves a much

larger region where the update reduces the KL divergence.
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4.5 Conditionally expected Kullback-Leibler variation

Figure 5 presents the conditionally expected KL (CKL) variation for the t-

GARCH and t-GAS models. The CKL optimality regions correspond to the

areas where the CKL variation is negative. For both models, the regions close

to the 45 degree line where ft ≈ f̃t are the most problematic. In those regions

the signal is less informative. In particular, if f̃t is substantially lower (higher)

than ft, the observed yt is likely to be informative that the filtered f̃t needs to be

updated upwards (downwards). In this case, the KL variation will be negative

with high probability. But when f̃t is close to ft, the randomness of yt can easily

lead ft to be updated incorrectly. For example, for known λ and in the extreme

case of f̃t = ft, the update for f̃t can only keep the same KL divergence to the

true conditional density for a given value of yt if the square (GARCH) or score

(GAS) compensates for the change due to the autoregressive term. Such an exact

compensation occurs with probability zero.

After a closer inspection of Figure 5, we may conclude that the GAS model

behaves more favorable than the t-GARCH model: (i) the regions of positive KL

variation (in orange and red, around the diagonal) are considerable smaller for

GAS, (ii) the regions of negative CKL variation (in green and blue, outside the

diagonal) are considerably wider for the GAS model. Whenever f̃t is substantially

different from ft, the GAS model presents stronger expected reductions in KL

divergence.

5 Conclusions

We have provided an information theoretic foundation for the use of the score

of the conditional model density in updating the time-varying parameters in ob-

servation driven time varying parameter models. Such score driven models are

known as generalized autoregressive score models and have been applied success-

fully for empirical studies in economics and finance. We have shown that updates

based on the score minimize the local Kullback-Leibler divergence between the
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Figure 5: The conditionally expected KL (CKL) variation for t-GARCH (left-
panel) and t-GAS (right-panel) updates. The conditional density of yt given ft
is the standard Student’s t with λ = 3 degrees of freedom.

(unknown) true conditional data density and the model implied conditional den-

sity. We have also established conditions under which the updates are optimal

in a non-local sense. The numerical results presented in our simulation study on

volatility models revealed that updates based on the score reduce the Kullback-

Leibler divergence more frequently than existing models. The numerical results

also showed that score updates in the volatility context not only reduce local,

but also global versions of Kullback-Leibler divergence.
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A Appendix: Review of Empirical Applications

The observation driven time-varying parameter models based on the score of the

predictive likelihood function of Creal, Koopman, and Lucas (2008, 2013) and

Harvey (2013) have been successfully applied in various empirical studies. Creal,

Koopman, and Lucas (2011) adopt the score framework to specify a multivariate

heavy-tailed model for time-varying volatilities and correlations. Extensions to

multivariate skewed distributions have been further explored by Lucas, Schwaab,

and Zhang (2014). Harvey (2013), Koopman, Lucas, and Scharth (2012), Andres

(2014), and Harvey and Luati (2014) propose different dynamic location and scale

models that are specific applications of the predictive score framework, while

new dynamic copula models have been investigated by Oh and Patton (2013)

and De Lira Salvatierra and Patton (2013). In an extensive empirical study,

Creal, Schwaab, Koopman, and Lucas (2014) show that the generalized mixed

measurement dynamic factor models for large unbalanced panels and mixtures

of discrete and continuous random variables can be analyzed jointly within the

score framework.

B Appendix: Proofs

Proof of Proposition 1. The line of proof presented below set the stage for all

subsequent proofs. Let Yδy(yt) be as defined in (8). By a repeated application

of the mean value theorem to p̃(y|f̃t+1; θ) and ∇̃t(f̃ ∗t+1, yt; θ), and using the form

of the Newton-GAS update f̃t+1 − f̃t = αS(f̃t; θ)∇̃(f̃t, yt; θ), we obtain CKL
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optimality if

∫
Yδy (yt)
p(y|ft) ln p̃(y|f̃t; θ)

p̃(y|f̃t+1; θ)
dy

= −
∫
Yδy (yt)

p(y|ft)
∂ ln p̃(y|f̃ ∗t+1; θ)

∂f
(f̃t+1 − f̃t)dy

= −
∫
Yδy (yt)

p(y|ft)∇̃(f̃ ∗t+1, y; θ) αS(f̃t; θ)∇̃(f̃t, yt; θ)dy

= −
∫
Yδy (yt)

p(y|ft)αS(f̃t; θ)
(
∇̃(f̃t, yt; θ)

)2
dy (16)

−
∫
Yδy (yt)

p(y|ft)αS(f̃t; θ)∇̃(f̃t, yt; θ)∂∇̃(f̃ ∗∗t+1, y
∗∗
t ; θ)

∂y
(yt − y)dy

−
∫
Yδy (yt)

p(y|ft)αS(f̃t; θ)∇̃(f̃t, yt; θ)∂∇̃(f̃ ∗∗t+1, y
∗∗
t ; θ)

∂f
(f̃ ∗t+1 − f̃t)dy < 0,

=: −
∫
Yδy (yt)

p(y|ft)αS(f̃t; θ)
(
∇̃(f̃t, yt; θ)

)2
dy + A(δf , δy) +B(δf , δy), (17)

where f̃ ∗t+1 is a point between f̃t+1 and f̃t, f̃ ∗∗t+1 is a point between f̃ ∗t+1 and f̃t,

y∗∗t is a point between yt and y, and A(δf , δy) and B(δf , δy) in (17) are equal to

the second and third term of (16), respectively. From Assumptions 1 and 2 we

obtain αS(f̃t; θ)
(
∇̃(f̃t, yt; θ)

)2
> 0 almost surely, such that for every f̃t and pt,

∃γ < 0 such that

−
∫
Yδy (yt)

p(y|ft)αS(f̃t; θ)
(
∇̃(f̃t, yt; θ)

)2
dy ≤ γ < 0.

The desired result now follows by noting that second and third term in (16) can

be made arbitrarily small compared to the first term due to the differentiability

of the score and the compactness of Yδy(yt); see working paper for more details.

The proof for local CKL-optimality follows immediately by a similar argument

using the assumption that f̃t+1 is a continuous random variable with a density.

Proof of Proposition 2. Let

f̃t+1 − f̃t = φ(f̃t, yt; θ)− φ(f̃t−1, yt−1; θ) = ∆φ(f̃t, yt; θ).
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We follow the same line of proof as for Proposition 1. To prove the ‘if’ part, we

write the local RKL variation for any given pt as

−
∫
Yδy (yt)
p(y|ft)

∂ ln p̃(y|f̃ ∗t+1; θ)
∂f

(f̃t+1 − f̃t)dy

= −
∫
Yδy (yt)

p(y|ft)∇̃(f̃ ∗t+1, y; θ)∆φ(f̃t, yt; θ)dy.
(18)

Using the definition of a score-equivalent update and the same argument as in

the proof of Proposition 1, we have, for a sufficiently small δy,

sign(∇̃(f̃ ∗t+1, y; θ)) = sign(∆φ(f̃t, yt; θ)) ∀ (f, y) ∈ Fδf (f̃t)× Yδy(yt),

and hence ∫
Yδy (yt)

p(y|ft)∇̃(f̃ ∗t+1, y; θ)∆φ(f̃t, yt; θ)dy > 0.

It implies that the local RKL variation in (18) is strictly negative under the

regularity conditions of Assumptions 1 and 2. A similar argument holds for

CKL variation by taking a subsequent expectation over f̃t+1 given f̃t and ft.

To prove the ‘only if’ part, suppose that the update f̃t+1 = φ(f̃t, yt; θ) is not

score-equivalent. Then, by Assumption 1, there must exists an open set FY ⊆

F × R such that sign(∇̃(f, y; θ)) 6= sign(∆φ(f, y; θ)) for all (f, y) ∈ FY . This

implies in turn that for sufficiently small δy we get ∇̃(f̃ ∗t+1, y; θ)∆φ(f̃t, yt; θ) < 0

for all (f, y) ∈ FY . Hence, by Assumption 1, ∃δy > 0 such that

∫
Yδy (yt)

p(y|ft)∇̃(f̃ ∗t+1, y; θ)∆φ(f̃t, yt; θ)dy < 0.

Hence, a non-score equivalent update is not RKL optimal regardless of pt. By

Assumption 1, the result extends immediately to CKL optimality.
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Proof of Proposition 3. As in the proof of Proposition 1, we require

∆t|t = −
∫
Y
p(y|ft)∇̃(f̃ ∗t , y; θ)(f̃t+1 − f̃t)dy

= −
∫
Y
p(y|ft)∇̃(y|f̃ ∗t )(ω + αS(f̃t; θ)∇̃(ft, y; θ) + (β − 1)f̃t)dy

= −
∫
Y
p(y|ft)∇̃(f̃t, yt; θ)(ω + (β − 1)f̃t)dy (19)

−
∫
Y
p(y|ft)αS(f̃t; θ)∇̃(f̃t, yt; θ)2dy + A(δy, δf ) < 0

where A(δy, δf ) is an appropriate remainder term as in the proof of Proposition 1,

which can be made arbitrarily small by selecting small enough values for (δy, δf ).

The second term in (19) is surely strictly negative, whereas the first term may

not be. As a result, for small enough (δy, δf ) we obtain the desired inequality if

αS(f̃t; θ)∇̃(yt|f̃t))2 > |∇̃(f̃t, yt; θ)| |ω + (β − 1)f̃t| ⇔ α >
|ω + (β − 1)f̃t|

S(f̃t; θ)|∇̃(f̃t, yt; θ)|
.

The proof for local CKL optimality follows by a similar argument and by taking

additional local expectations with respect to f̃t+1 given f̃t and ft.

Proof of Proposition 4. From the proof of Proposition 1, ∆t|t < 0 holds if

−
∫
Yδy (yt)
p(y|ft)αS(f̃t; θ)

(
∇̃(f̃t, yt; θ)

)2
dy

−
∫
Yδy (yt)

p(y|ft)αS(f̃t; θ)∇̃(f̃t, yt; θ)∂∇̃(f̃ ∗∗t+1, y
∗∗
t ; θ)

∂y
(yt − y)dy

−
∫
Yδy (yt)

p(y|ft)αS(f̃t; θ)∇̃(f̃t, yt; θ)∂∇̃(f̃ ∗∗t+1, y
∗∗
t ; θ)

∂f
(f̃ ∗t+1 − f̃t)dy < 0.

The first term is strictly positive, but the other two may be either positive or

negative. By norm subadditivity, we obtain that the inequality is satisfied if

αS(f̃t; θ)|∇̃(f̃t, yt; θ)|2 > αS(f̃t; θ)|∇̃(f̃t, yt; θ)| |ζ(δf , δy)| δy

+ αS(f̃t; θ)|∇̃(f̃t, yt; θ)| |ξf (δf , δy)| δf ⇔ (20)

|∇̃(f̃t, yt; θ)| > ξ(δf , δy)× δf + ζ(δf , δy)× δy = η(δf , δy).
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A similar argument holds for the CKL optimality.

Proof of Proposition 5. From the proofs of Proposition 1 and 3, we have

∆t|t =−
∫
Y
p(y|ft)∇̃(yt|f̃t)(ω + (β − 1)f̃t)dy

−
∫
Y
p(y|ft)

∂∇̃(y∗∗∗t , f̃ ∗∗∗t )
∂y

(ω + (1− β)f̃t)(y − yt)dy

−
∫
Y
p(y|ft)

∂∇̃(y∗∗∗t , f̃ ∗∗∗t )
∂f̃

(ω + (β − 1)f̃t)(f̃ ∗t − f̃t)dy

−
∫
Y
p(y|ft)αS(f̃t; θ)∇̃(yt|f̃t)2dy

−
∫
Y
p(y|ft)αS(f̃t; θ)∇̃(yt|f̃t)

∂∇̃(y∗∗t , f̃ ∗∗t )
∂y

(y − yt)dy

−
∫
Y
p(y|ft)αS(f̃t; θ)∇̃(yt|f̃t)

∂∇̃(y∗∗t , f̃ ∗∗t )
∂f

(f̃ ∗t − f̃t)dy,

with the fourth term strictly positive and the remaining terms possibly taking

positive or negative values. As such, we obtain the desired result once more by

ensuring the fourth term is larger in absolute value than the sum of the remaining

terms. By norm sub-additivity, this is implied by

αS(f̃t; θ)∇̃(yt|f̃t)2 >|∇̃(yt|f̃t)||ω + (β − 1)f̃t|+ ζδf ,δy(f̃t, yt; θ)|ω + (1− β)f̃t|δy

+ ξδf ,δy(f̃t, yt; θ)|ω + (β − 1)f̃t|δf

+ αS(f̃t; θ)∇̃(yt|f̃t)
[
ζδf ,δy(f̃t, yt; θ)δy + ξδf ,δy(f̃t, yt; θ)δf

]
,

which delivers the desired result. A similar argument holds for CKL optimality.
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