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Summary

F This paper introduces a new methodology to combine N density
forecasts, based on Sieve estimation (Chen and Shen, 1998)

F The combination weights depends on the variable that is tried to be
forecasted (here the S&P 500 asset return)

F Use of piece-wise linear functions: Density is divided in certain parts
by thresholds, each part gets a different weight.

F The log-score is used as a loss function, which is minimized.
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Summary

F Nice idea the weights differ per region of the density

F Evidence both in simulation study as well in empirical application

F In addition, the theoretical part establishes the appealing asymptotic
features of the Sieve estimates
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Comments: Sieve estimation (I) and T

F Non-parametric estimator to estimate an unknown high-dimensional
function as more data becomes available

F Simulation/empirical application shows it works for large T ; what
about macro-economic examples when T is small? (quarterly
inflation, output etc.)

F Moreover, other studies (e.g. Del Negro et al., 2013; Billio et al.,
2014) show that optimal weights of density forecasts are time-varying
→ hence static weights imply the use of a moving window of
reasonable length (no large T ). Curious to see if Sieve estimation still
works properly.
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Comments: Sieve estimation (II) N and uniqueness

F The paper shows results of combining two (simulation) or four
(application) density forecasts; what about N > 5? Does estimation
still works (also given the number of thresholds) ? Probably show this
also in simulation design?

F Uniqueness of parameter estimates not proven: Authors propose to
modify (log-score) loss function as follows:

LT =
T∑

t=1
l(pt(yt); yt) + T γ

N∑
i=1

∞∑
s=1

|νs |δ δ > 0, 0 < γ < 1

Show by simulation setting? Do we have to care about it?
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Comments: Simulation Design

F DGP 1: Rejection probabilities low, even if p = 2 and r1 = 0 (their
correct values). What happens if you estimate these values?
Implication for test in application?

F DGP 2: DGP = Standard Normal, combination of again two Normals
with different means. Curious to see N > 2 (as noted before). Why a
Normal distribution (from practical perspectives) ?
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Comments: Application (I): log-score and p

F Table 8/9: Significant drop in performance (log-score) if one adds
one model. Desirable? (compare with linear method)

Component Densities
(1:GARCH, 2:EGARCH, 3:SV, 4:TGARCH)

In-sample Out-of-sample
2,3,4 1,2,3,4 2,3,4 1,2,3,4

G 2.762 2.572 0.735 -0.296
L -1.183 -1.169 -0.558 -0.554
p̂ 7 1

F Probably related with the estimation of p: a ”non-linear trade-off
between the complexity of the generalized combination and
estimation error” (also shown in simulation setting).

F In simulation, often p = 3 and p = 4 is chosen (according to Figure
1), while the true one is p = 2. How to set pmax ?
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Comments: Application (II): Gain and weights

F I truly believe the generalized method improves upon the linear
method, but I have difficulties with understanding where the gain
comes from? (What are the estimated thresholds?)

F E.g.: Combining GARCH with TGARCH, the (in-sample) log-scores of
the Generalized vs. Linear method are 2.762 and -1.169 respectively.
The 8 weights corresponding with the TGARCH are (0.40,
1,1,0.84,1,1,1,0.5). Hence the huge difference arises from the tails?

F In general: what about interpreting this weights?
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