# From Funding Liquidity to Market Liquidity: Evidence from Danish bond markets

Jens Dick-Nielsen

Copenhagen Business School

Jacob Gyntelberg

**Bank for International Settlements** 

Jesper Lund

Copenhagen Business School



## Findings - 1

- Danish covered bonds and government bonds are equally liquid (MiFID data).
- Bond market liquidity is driven by Euro money market stress i.e. funding liquidity drives market liquidity.
- The results on funding liquidity also hold true for other European government bonds (MTS data).
- No evidence of a spiraling effect.



## Findings - 2

- No reason not to consider Danish covered bonds as being 'extremely liquid' in regulatory liquidity buffers.
- LCR in the CRR/CRD-IV (Basel III) has opened up for this possibility.
- Limited effectiveness of liquidity buffers with (high quality) bonds.
- If funding stress is systemic and money markets are stressed, then it will also be hard to liquidate a bond portfolio at a fair price.



#### Related Literature - 1

- Bond market liquidity.
  - Bao, Pan and Wang (2011), Dick-Nielsen, Feldhutter and Lando (2012).
- Funding constraints.
  - Xiong (2001), Kyle and Xiong (2001), Gromb and Vayanos (2002),
     Brunnermeier and Pedersen (2009), Fontaine and Garcia (2012), Adrain, Etula and Muir (2013).
- MiFID and MTS data.
  - Dick-Nielsen, Gyntelberg and Sangill (2012), Gyntelberg, Hördahl, Ters and Urban (2013).



- MiFID transaction data complete transaction record of Danish bond market transactions from Nov 2007 to Dec 2011.
- Secondary market transactions above DKKm 10 (app. EURm 1.3).
- Focus on benchmark bonds from large issuers with similar credit quality (65-85% of the market for covered bonds).
- DK covered bond market size (140% of GDP), government bonds (40% of GDP).



- We consider 4 groups of Danish bonds:
  - Short term government bonds (treasury bonds with <5 years to maturity).</li>
  - Long term government bonds (treasury bonds with 5-10 years to maturity).
  - Short term covered bonds (1-year fixed rate bullet bonds (ARMS)).
  - Long term covered bonds (30-year fixed rate callable bonds).

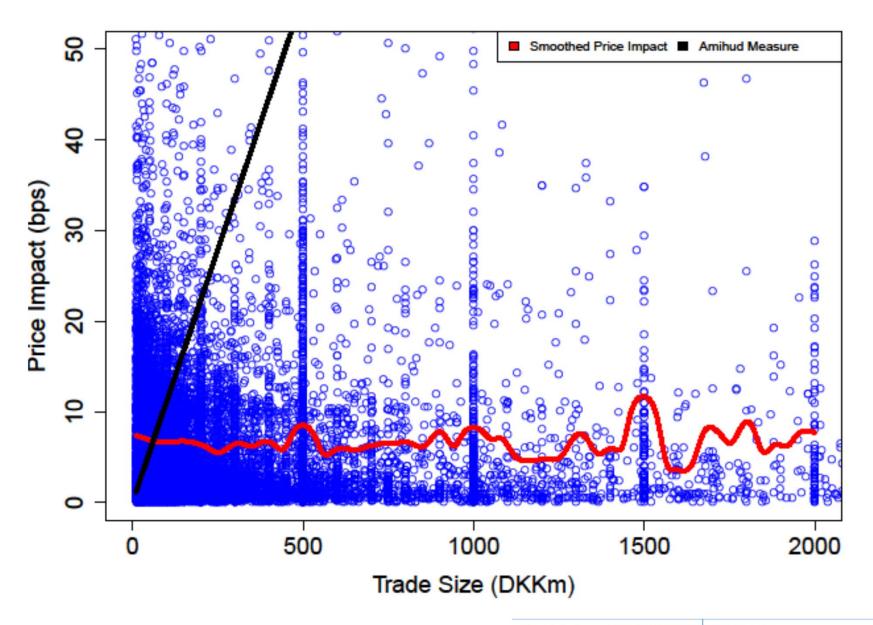


- Danish mortgage bonds are funded by issuances of covered bonds.
- The issuance is completely dominated by a few major institutions.
- The issuers follow a 'match funding' principle which provide a hedge against interest rate, currency and prepayment risk.
- During the last fifteen years the market has shifted from the 30year fixed rate callable mortgage loan to 1-year adjustable rate mortgages.



| Market                  | Lo     | ng<br>ered | Short<br>Covered |      | Long<br>Government | Short<br>Government |
|-------------------------|--------|------------|------------------|------|--------------------|---------------------|
| (Monthly average)       | Market | Sample     | Market Sample    |      | Market/Sample      | Market/Sample       |
| Amount outst. (DKKbn)   | 494    | 424        | 750              | 497  | 174                | 257                 |
| Number of Bonds         | 115.1  | 78.7       | 35.7             | 17.5 | 2.8                | 4.2                 |
| Bond Size (DKKbn)       | 4.3    | 5.4        | 22.1             | 29.7 | 63.6               | 62.3                |
| Turnover (DKKbn)        | 115    | 104.7      | 332              | 155  | 76                 | 65                  |
| Number of trades        | 2,109  | 1,891      | 1,763            | 928  | 591                | 405                 |
| Mean tradesize (DKKm)   | 54.2   | 55.1       | 158              | 156  | 136.6              | 169.4               |
| Median tradesize (DKKm) | 26.9   | 28.0       | 69.0             | 70.1 | 47.8               | 66.1                |
| Time to Maturity        | 26.0   | 26.3       | 0.64             | 0.63 | 8.03               | 2.53                |

# Methodology - 1


Market liquidity is measured by 'raw' price impact:

$$PI = \frac{|p_i - p_{i-1}|}{p_{i-1}}$$

• Standard stock market measures assume a linear relationship with volume (Kyle 1985, Amihud 2002):

$$PI = \lambda \times trade size$$

We find that the relationship is flat in our sample.





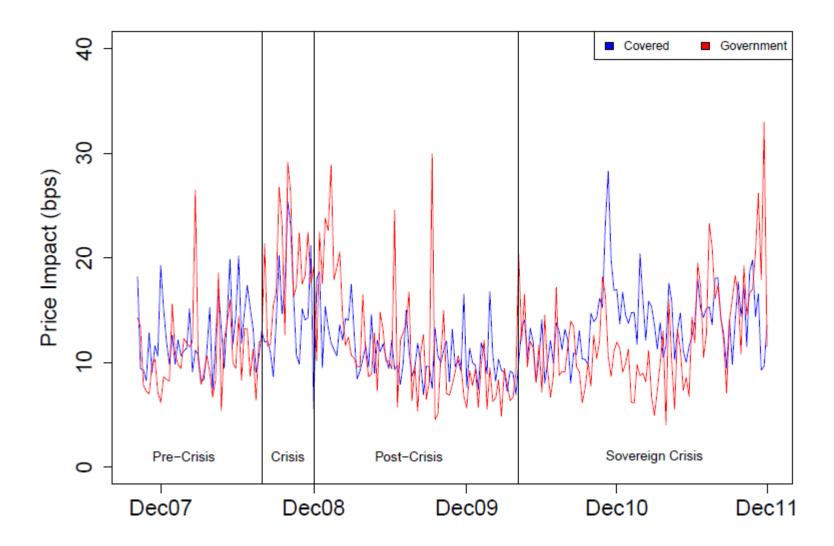


## Market Liquidity - 1


- Danish government bonds were slightly more liquid than covered bonds before the crisis.
- During the crisis covered bonds were slightly more liquid.
- The level of liquidity has been the same for the two groups after the crisis.
- Both markets were active and fairly liquid even during the peak of the crisis.

| Period           | Market           | 20 mill. | 50 mill. | 100 mill. | 200 mill. |
|------------------|------------------|----------|----------|-----------|-----------|
| 20. 33           | Long Covered     | 7.90     | 8.18     | 7.52      | 7.33      |
| Pre-Crisis       | Short Covered    | 5.03     | 4.57     | 3.42      | 3.00      |
|                  | Long Government  | 9,62     | 8.73     | 7.50      | 5.87      |
|                  | Short Government | 3.53     | 3.03     | 2.86      | 2.44      |
| 366 1937 N       | Long Covered     | 5.79     | 10.28    | 11.42     | 9.25      |
| Crisis           | Short Covered    | 3.45     | 3.23     | 8.24      | 6.05      |
|                  | Long Government  | 10.65    | 11.27    | 13.55     | 7.72      |
|                  | Short Government | 9.32     | 8.32     | 8.63      | 8.26      |
|                  | Long Covered     | 6.61     | 7.49     | 7.72      | 6.18      |
| Post-Crisis      | Short Covered    | 3.28     | 3,26     | 3.42      | 2.98      |
|                  | Long Government  | 7.90     | 8.47     | 7.13      | 5.76      |
|                  | Short Government | 2.93     | 6.28     | 4.58      | 3.93      |
|                  | Long Covered     | 8.74     | 9.64     | 9.65      | 8.61      |
| Sovereign Crisis | Short Covered    | 2.95     | 2.97     | 2.14      | 2.50      |
|                  | Long Government  | 7.32     | 8,36     | 9.30      | 7.33      |
|                  | Short Government | 3.63     | 2.25     | 2.76      | 1.82      |

• Price impact (bps) for standard trading sizes.








Short term bonds



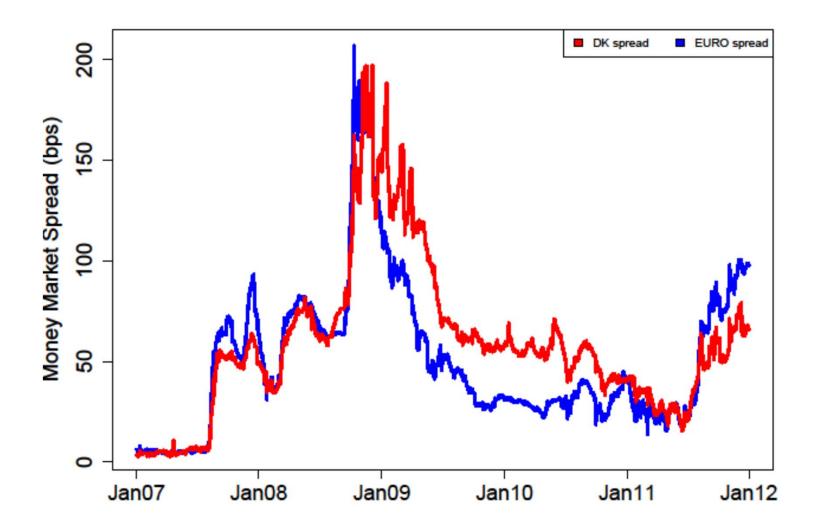


Long term bonds

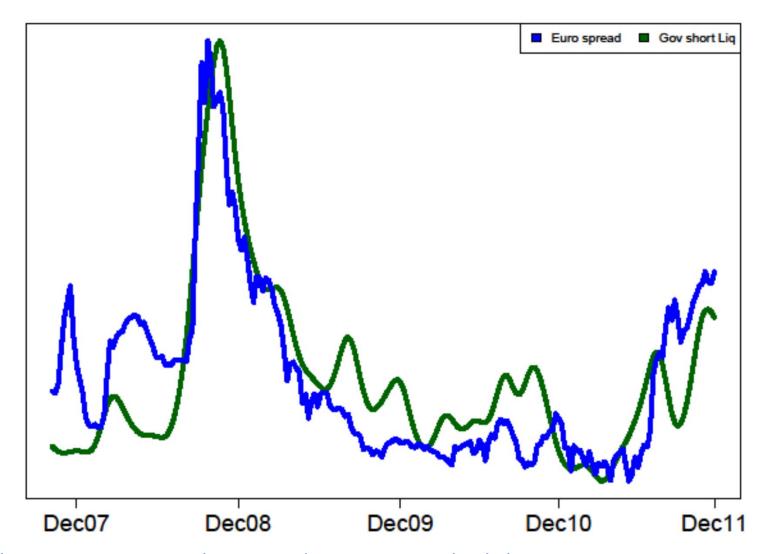


# Market Liquidity - 5

Dealer – Customer transactions (daily avg. volume in DKKm).


| Market        | Pre-Crisis | Crisis | Post-Crisis | Sovereign Crisis |
|---------------|------------|--------|-------------|------------------|
| Short covered | 1,240      | 2,670  | 3,860       | 3,530            |
| Short Gov.    | 410        | 700    | 360         | 740              |
| Long covered  | 1,800      | 2,170  | 1,330       | 1,330            |
| Long Gov.     | 910        | 720    | 630         | 700              |

# Market Liquidity - 6


Interdealer transactions (daily avg. volume in DKKm).

| Market        | Pre-Crisis | Crisis | Post-Crisis | Sovereign Crisis |
|---------------|------------|--------|-------------|------------------|
| Short covered | 210        | 110    | 230         | 230              |
| Short Gov.    | 170        | 50     | 50          | 130              |
| Long covered  | 790        | 850    | 610         | 560              |
| Long Gov.     | 180        | 110    | 90          | 80               |

- "Will it be the same in the next crisis?"
   or
  - "Which factors can explain market liquidity?"
- Let money market spreads proxy for funding liquidity (Brunnermeier (2009), Hameed et. al (2010)).
  - Euro spread = EURIBOR3m EONIA3m
  - DK spread = CIBOR3m CITA3m







• The Euro money market spread versus smoothed short term government bonds.



- Granger causality tests from funding liquidity to market liquidity in levels.
- Strong connection except for long term covered bonds (noicy).

| Granger Causality Test P-value | Short Cov | Long Cov | Short Gov | Long Gov |
|--------------------------------|-----------|----------|-----------|----------|
| EUspread does not cause        | < 0.001   | 0.08     | < 0.001   | < 0.001  |
| DKspread does not cause        | 0.003     | 0.93     | < 0.001   | < 0.001  |

Possible unit root issue in the levels.



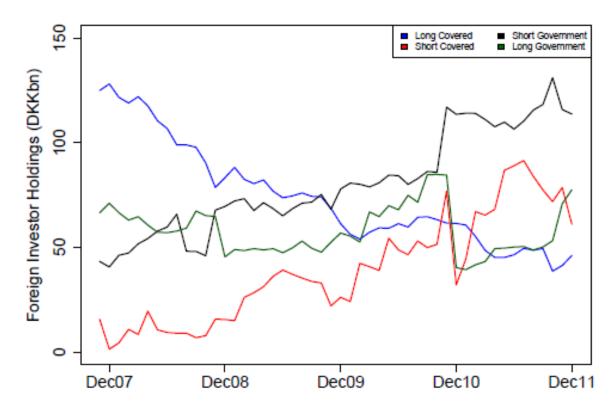
Regression in weekly changes.

| Bond Series                    | Long     | Short      | Long       | Short      |
|--------------------------------|----------|------------|------------|------------|
| Dolld Series                   | Covered  | Covered    | Government | Government |
| Intercept                      | -0.001   | 0.02       | 0.01       | -0.005     |
|                                | (0.16)   | (0.13)     | (0.21)     | (0.16)     |
| $\Delta 	ext{PI}_{t-1}$        | -0.38*** | -0.43***   | -0.52***   | -0.43***   |
|                                | (0.07)   | (0.04)     | (0.07)     | (0.06)     |
| $\Delta \text{EUspread}_{t-1}$ | 3.64     | -2.54      | 10.98**    | 9.34**     |
|                                | (3.50)   | (2.77)     | (5.22)     | (3.96)     |
| $\Delta \text{DKspread}_{t-1}$ | -3.48    | $4.70^{*}$ | -0.08      | -0.29      |
|                                | (4.29)   | (2.82)     | (4.30)     | (3.91)     |
| $R^2$                          | 0.15     | 0.21       | 0.26       | 0.20       |
| N                              | 217      | 211        | 217        | 217        |

• Principal component analysis of the weekly changes.

|                                | 1PC  | 2PC   | 3PC   | 4PC   |
|--------------------------------|------|-------|-------|-------|
| $\Delta$ Long Covered          | 0.50 | -0.48 | 0.54  | 0.48  |
| $\Delta$ Short Covered         | 0.18 | 0.84  | 0.13  | 0.50  |
| $\Delta { m Long}$ Government  | 0.68 | -0.13 | -0.81 | 0.25  |
| $\Delta { m Short~Government}$ | 0.51 | 0.23  | 0.18  | -0.68 |
| Cum. % explained               | 29%  | 56%   | 79%   | 100%  |

Regression on the weekly principal components.


| PC Series                      | 1. Bond PC | 2. Bond PC | 3. Bond PC | 4. Bond PC |
|--------------------------------|------------|------------|------------|------------|
| Intercept                      | -0.001     | -0.02      | 0.01       | -0.01      |
|                                | (0.04)     | (0.04)     | (0.04)     | (0.04)     |
| $PC_{t-1}$                     | -0.37***   | -0.47***   | -0.45***   | -0.52***   |
|                                | (0.05)     | (0.04)     | (0.05)     | (0.05)     |
| $\Delta \text{EUspread}_{t-1}$ | 2.70**     | -1.24*     | -0.81      | -0.49      |
|                                | (1.15)     | (0.74)     | (0.80)     | (0.79)     |
| $\Delta \text{DKspread}_{t-1}$ | -0.45      | 1.72**     | -0.20      | 0.38       |
|                                | (1.12)     | (0.81)     | (0.83)     | (0.89)     |
| $R^2$                          | 0.15       | 0.25       | 0.22       | 0.26       |
| N                              | 211        | 211        | 211        | 211        |

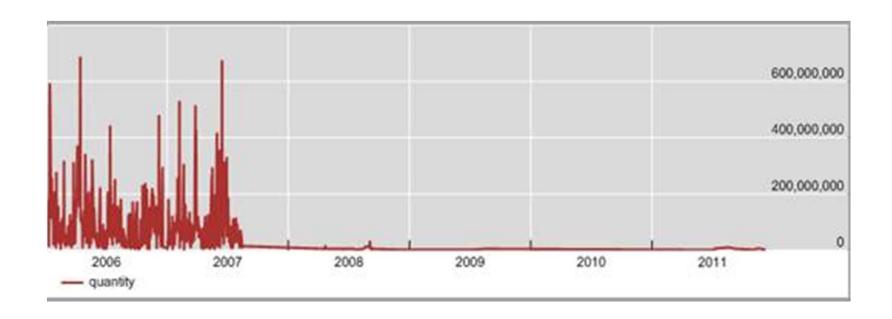


- Euro spreads drive the changes in market liquidity.
- The country spread is important for the second PC. The second PC loaded heavily on the short term covered bonds.
- Euro spreads drive the DK spreads with no significant feedback.
   (See table in the paper).
- No significant feedback effect from market liquidity to the money market (maybe faster than the weekly frequency). (See table in the paper).

| PC Series                        | 1. Bond PC | 2. Bond PC | 3. Bond PC | 4. Bond PC |
|----------------------------------|------------|------------|------------|------------|
| Intercept                        | -0.005     | -0.02      | 0.01       | -0.01      |
|                                  | (0.04)     | (0.04)     | (0.04)     | (0.04)     |
| $PC_{t-1}$                       | -0.37***   | -0.47***   | -0.45***   | -0.52***   |
|                                  | (0.05)     | (0.04)     | (0.05)     | (0.05)     |
| $spreadPC1_{t-1}$                | 0.13**     | 0.03       | -0.06      | -0.01      |
|                                  | (0.05)     | (0.05)     | (0.04)     | (0.03)     |
| $\operatorname{spreadPC2}_{t-1}$ | 0.19       | -0.18**    | -0.04      | -0.05      |
|                                  | (0.13)     | (0.08)     | (0.09)     | (0.10)     |
| $R^2$                            | 0.15       | 0.25       | 0.22       | 0.26       |
| N                                | 211        | 211        | 211        | 211        |

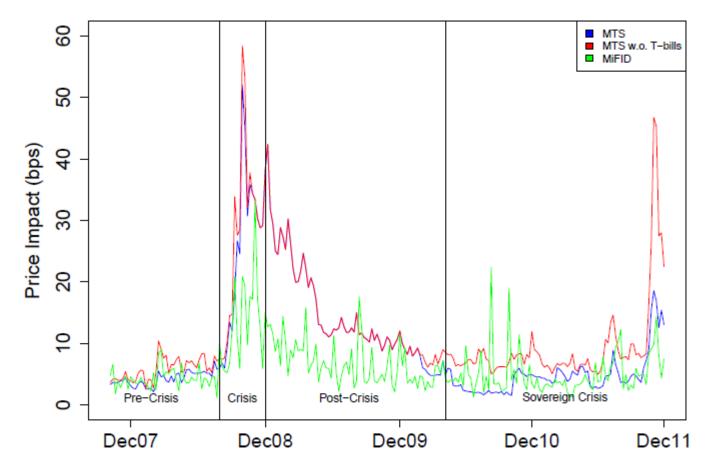
• Regression using principal components of the money market spreads.




Foreign investor holdings.

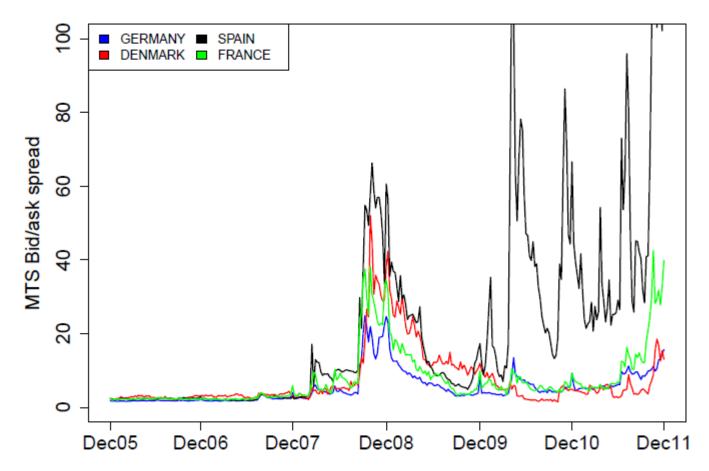


- Use MTS data to look at the rest of Europe (preliminary work).
- Supposedly binding and executable qoutes.
- Calculate weekly median bid-ask spreads from average daily data:


$$bidask = \frac{P\_ask - P\_bid}{P\_ask}$$

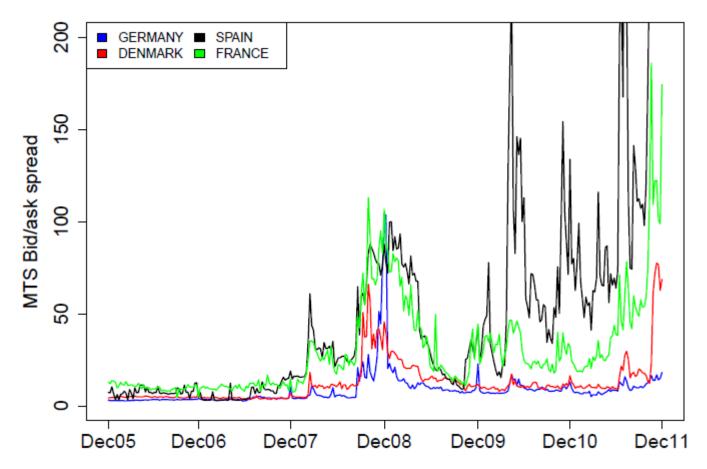
 Only government bond data, covered bonds stopped being qouted on MTS with the beginning of the crisis and has not returned yet.




Quoted covered bond volume on MTS.






• MIFID versus MTS for Danish short term government.





Average weekly quoted bid-ask for short term government bonds.





Average weekly quoted bid-ask for long term government bonds.



|                                       | 1PC  | 2PC   | 3PC   | 4PC   | 5PC   | 6PC   | 7PC   | 8PC   |
|---------------------------------------|------|-------|-------|-------|-------|-------|-------|-------|
| $\Delta \text{Short DE}$              | 0.46 | 0.17  | 0.23  | -0.08 | -0.22 | -0.50 | -0.63 | 0.09  |
| $\Delta Short DK$                     | 0.33 | 0.47  | -0.27 | 0.14  | 0.33  | 0.59  | -0.34 | -0.08 |
| $\Delta \mathrm{Short} \ \mathrm{ES}$ | 0.42 | -0.48 | -0.07 | -0.09 | -0.02 | 0.05  | 0.01  | -0.76 |
| $\Delta \mathrm{Short} \ \mathrm{FR}$ | 0.11 | 0.08  | 0.73  | 0.03  | 0.64  | -0.07 | 0.17  | -0.08 |
| $\Delta { m Long~DE}$                 | 0.35 | 0.32  | 0.33  | -0.29 | -0.53 | 0.32  | 0.44  | 0.04  |
| $\Delta \text{Long DK}$               | 0.35 | 0.31  | -0.47 | -0.05 | 0.25  | -0.51 | 0.49  | 0.00  |
| $\Delta \text{Long ES}$               | 0.35 | -0.50 | -0.11 | -0.43 | 0.25  | 0.19  | -0.02 | 0.58  |
| $\Delta$ Long FR                      | 0.35 | -0.25 | 0.06  | 0.83  | -0.14 | 0.04  | 0.16  | 0.26  |
| Cum. % explained                      | 37%  | 54%   | 70%   | 79%   | 87%   | 93%   | 97%   | 100%  |

 Principal component analysis of weekly changes in MTS bid-ask spreads.



| PC Series                      | 1. Bond PC | 2. Bond PC | 3. Bond PC   | 4. Bond PC |
|--------------------------------|------------|------------|--------------|------------|
| Intercept                      | -0.001     | -0.003     | -0.004       | -0.006     |
|                                | (0.12)     | (0.08)     | (0.07)       | (0.06)     |
| $PC_{t-1}$                     | -0.003     | -0.09      | $0.42^{***}$ | -0.30***   |
|                                | (0.07)     | (0.07)     | (0.06)       | (0.07)     |
| $\Delta \text{EUspread}_{t-1}$ | 3.31**     | $1.72^{*}$ | -1.36        | 0.68       |
|                                | (1.44)     | (0.94)     | (0.84)       | (0.67)     |
| $R^2$                          | 0.03       | 0.02       | 0.19         | 0.08       |
| N                              | 216        | 216        | 216          | 216        |

• Regression using the PCs and the Euro money market spread.



- The first principal component of the changes is driven by the Euro spread. The component loads 'equally' on all 8 bid-ask series.
- The second principal component is also related to the Euro spread.
   It seems to be a 'sovereign crisis' factor separating out Spain and long term French bonds.
- The overall conclusion from the MTS analysis is the same as with the Danish MiFID data.
- Funding liquidity drives market liquidity.



## Summary - 1

- Danish covered bonds and government bonds are equally liquid.
- The Danish bond market was active and fairly liquid during the crisis.
- The bond market liquidity is driven by stress in the Euro money market i.e. funding liquidity.
- This finding is robust when expanding to MTS government bond quotes for Germany, France, Spain and Denmark.

