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1 Introduction

An important function of macroeconomics is to predict the consequences of changes in policy.

In this paper we revisit the role that evidence on policy shocks—that is, surprise deviations

from a prevailing rule—can play in helping macroeconomists learn about policy rule counter-

factuals. Existing work mainly uses such policy shocks in two ways. First, in what Christiano

et al. (1999) call the “Lucas program”, researchers begin by estimating the causal effects of

a policy shock in the data, then construct a micro-founded structural model that matches

these effects, and finally trust the model as a laboratory for predicting the effects of changes

in policy rules. By design, this approach yields counterfactuals that are robust to the Lucas

(1976) critique; on the other hand, the researcher needs to commit to a particular parametric

model, thus introducing concerns about model misspecification. An alternative approach,

proposed by Sims & Zha (1995), instead relies only on the estimated policy shock: in their

procedure, the economy is subjected to a new policy shock at each date t, with the shocks

chosen so that, t-by-t, the counterfactual policy rule holds.1 This strategy does not require

the researcher to commit to a particular model, but it is subject to the Lucas critique: a rule

change announced at date 0 will in general have different effects on private-sector decisions

than a sequence of surprise policy shocks at t = 0, 1, . . . .

The contribution of this paper is to propose a method that constructs policy counterfac-

tuals using empirical evidence on multiple distinct policy shocks, rather than just a single

one. Like Sims & Zha, the method does not rely on a particular parametric structural model;

at the same time, for a family of models that nests many of those popular in the Lucas pro-

gram, it yields counterfactuals that are robust to the Lucas critique. At the heart of our

methodology lies an identification result. We prove that, for a relatively general family of

macro models, the causal effects of contemporaneous as well as news shocks to a given policy

rule are sufficient to construct Lucas critique-robust counterfactuals for alternative policy

rules. The core intuition is that, by subjecting the economy to multiple distinct policy shocks

at date 0 (rather than a new value of a single shock at t = 0, 1, . . . , as done in Sims & Zha),

we are able to enforce the contemplated counterfactual policy rule not just ex post along the

equilibrium path, but also ex ante in private-sector expectations. Under our assumptions,

doing so is enough to fully sidestep the Lucas critique. While our exact identification result

1See for example Ramey (1993), Bernanke et al. (1997), Leeper & Zha (2003), Hamilton & Herrera
(2004), Uribe & Yue (2006), Degasperi et al. (2020), Eberly et al. (2020), Brunnermeier et al. (2021), and
Antolin-Diaz et al. (2021) for important applications and extensions of this method.
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requires knowledge of the causal effects of a very large number of policy shocks, our proposed

empirical method can be applied in the empirically relevant case of a researcher with access

to only a couple of distinct shocks. We demonstrate the usefulness of the proposed approach

with several applications to monetary policy rule counterfactuals.

Identification result. The first part of the paper establishes the identification result.

Our analysis builds on a general linear data-generating process, with one key added restric-

tion: policy is allowed to affect private-sector behavior only through the current and future

expected path of the policy instrument.2 For example, for monetary policy, the private sec-

tor only cares about the expected future path of the nominal interest rate, and not whether

this path is the result of the systematic component of policy—i.e., the policy rule—or due to

shocks to a given rule. We consider an econometrician that lives in this economy and observes

data generated under some baseline policy rule, where that baseline rule is subject to shocks.

The econometrician then wishes to predict the effects of a switch to some alternative policy

rule. Using standard time-series methods, she can estimate the causal effects of shocks to the

prevailing policy rule (e.g., Ramey, 2016; Stock & Watson, 2018). Our identification result

states that, if the econometrician has successfully estimated the effects of contemporaneous

shocks to the prevailing rule as well as the effects of news about deviations from the rule at

all future horizons, then those estimates contain all the information she needs to construct

the counterfactual. Key to the proof is our assumption on how policy rules are allowed to

shape private-sector behavior. Since only the expected future path of the policy instrument

matters, any given rule—characterized by the instrument path that it implies—can equiva-

lently be synthesized by adding well-chosen shocks to the baseline rule. All that is required

is that those policy shocks imply the same expected instrument path from date-0 onwards

as the counterfactual rule. Finally we show that, given a loss function, our econometrician

can furthermore leverage the same logic to also characterize optimal policy.3

How general is the setting of this identification result? Our two key model restrictions

are (i) linearity and (ii) the way that the policy instrument is allowed to shape private-sector

behavior. We show that property (ii) is a feature shared by many standard business-cycle

2More precisely, the policy rule is allowed to matter only through (a) the expected path of the instrument
and (b) equilibrium selection. Our assumptions on equilibrium existence and uniqueness for the different
rules that we consider address equilibrium selection.

3To be clear, our results are silent on the mapping from observables to welfare, and so on the shape of
loss functions. Structural models are one way to arrive at such objectives. However, given that objective
functions in practice are often derived from a legislated mandate rather than economic theory (e.g., dual
mandate), we believe it is useful to have a method of calculating optimal policy for a given objective.
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models, including those with many frictions (e.g., Christiano et al., 2005), shocks (e.g., Smets

&Wouters, 2007), and even rich micro-level heterogeneity (e.g., Kaplan et al., 2018; Ottonello

& Winberry, 2020). Perhaps the most popular class of models violating our restriction is

those with an asymmetry of information between the policymaker and private sector, as

in Lucas (1972). In such models, private-sector agents solve a filtering problem, and the

policy rule affects both the dynamics of the policy instrument as well as the information

contained in that policy choice; as a result, the policy instrument itself does not afford a

full characterization of the policy stance. The linearity assumption (i), on the other hand,

is not a conceptual necessity, but rather a practical one. Linearity implies that the effects

of policy changes are invariant to their size, their sign, and the state of the economy. Given

certainty equivalence, we can thus simply focus on expected values. As we will see, these

simplifications are crucial to connect our theory to empirical time series evidence. Linearity

does, of course, also impose costs: the empirical methodology that we propose can be used

to compare different cyclical stabilization policies (e.g., Taylor rules), but is less well-suited

to study policies that alter the steady state (e.g., changes in the inflation target).

Empirical strategy. The main challenge to operationalizing our identification result is

that empirical evidence on the effects of policy shocks is limited. Our theory says that we

need to select a linear combination of policy shocks at date-0 that perturbs the current and

expected future path of the policy instrument exactly like the contemplated counterfactual

rule. This is a daunting informational requirement: in general, to synthesize the effects of

any possible expected policy instrument path of some (in practice large) length T , we would

need access to T distinct policy shocks. While existing empirical evidence falls short of this

ideal, recent research has however made progress on identifying the effects of at least some

distinct policy shocks with rather different implications for future expected policy paths.4

How much can be done with this available evidence?

The idea of our empirical method is to use the available evidence on policy shock trans-

mission to provide a best Lucas critique-robust approximation to the desired systematic policy

rule counterfactual. Given estimates of the dynamic causal effects of a small number ns of

4For monetary policy, many of the different popular shock series (e.g., Romer & Romer, 2004; Gertler
& Karadi, 2015; Antoĺın-Dı́az & Rubio-Ramı́rez, 2018; Bauer & Swanson, 2022) are well-known to lead to
rather different responses of short-term rates. Other identification strategies explicitly aim to identify shocks
at different parts of the yield curve (e.g., Gürkaynak et al., 2005; Antolin-Diaz et al., 2021; Inoue & Rossi,
2021), as required by our theory. For fiscal policy, Ramey (2011) and Ramey & Zubairy (2018) estimate the
effects of short-lived as well as more persistent shocks. Mertens & Ravn (2010) and Leeper et al. (2013) are
similarly focussed on disentangling shocks with different policy dynamics.
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policy shocks and their associated instrument paths, we face the challenge that our pop-

ulation identification result cannot be applied immediately: the counterfactual policy rule

needs to hold in ex post equilibrium and ex ante expectation for a large number T of periods,

but we only have access to ns ≪ T shocks—more equations than unknowns. Our proposal

is simply to choose the linear combination of date-0 shocks that enforces the desired coun-

terfactual rule as well as possible, in a standard least-squares sense. Crucially, since this

approach involves no ex post surprises dated t = 1, 2, . . . , it is—under our assumptions—

fully robust to Lucas critique concerns. Whether or not this best approximation is then in

fact a sufficiently accurate representation of the desired counterfactual rule is invariably an

application-dependent question.

Applications. We demonstrate the uses and limitations of our empirical method through

several examples. Our object of interest is the propagation of a contractionary investment-

specific technology shock under different monetary policy rules. As the inputs to our method,

we consider the two most popular monetary policy shock series: those of Romer & Romer

(2004) and Gertler & Karadi (2015).5 Importantly, these two shocks reflect different kinds

of monetary news—a relatively transitory innovation for Romer & Romer, and a much more

gradual rate change for Gertler & Karadi.

Armed with the causal effects associated with those two distinct nominal interest rate

paths, we then apply our empirical method to construct counterfactuals for alternative policy

rules that: target the output gap, enforce a Taylor-type rule, peg the nominal rate of interest,

target nominal GDP, and minimize a simple dual-mandate loss function. We find that, with

the exception of the nominal rate peg, the counterfactual rules can be enforced to quite a high

degree of accuracy. The conclusion is that, at least for our investment shock, several rather

different monetary policy counterfactuals can already be characterized quite sharply simply

by combining existing pieces of empirical evidence on monetary policy shock transmission,

without commitment to any particular parametric structural model.

Literature. Our identification result provides a bridge between the micro-founded mod-

els of the “Lucas program” (as discussed in Christiano et al., 1999) and the empirical strategy

proposed by Sims & Zha (1995). Our results reveal that, in the structural models typically

used in the Lucas program, the estimand of the econometric strategy of Sims & Zha is not

equal to the true policy rule counterfactual only because of expectational effects related to

5For robustness, we also repeat our exercise using two recent refinements of those canonical shock series.
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the future conduct of policy. In theory, using multiple distinct policy shocks at date 0 (rather

than a single one at each t ≥ 0) circumvents this problem; in practice, doing so is feasible

because a growing literature on the semi-structural identification of policy shocks provides

us with a fairly rich body of empirical evidence (see the references in Footnote 4).

Our work also relates to other more recent contributions to counterfactual policy analysis.

Beraja (2020) similarly forms policy counterfactuals without relying on particular parametric

models. His approach relies on stronger exclusion restrictions in the non-policy block of the

economy, but given those restrictions requires less evidence on policy news shocks. Barni-

chon & Mesters (2021) use policy shock impulse responses to evaluate whether a given policy

decision is optimal, and if not how to improve upon it. While their focus is on evaluating a

single policy decision, we instead study systematic changes in the policy rule, requiring ad-

ditional assumptions on the economic environment—our two assumptions discussed above.6

More broadly, our work relates to the increasing popularity of a “sufficient statistics” logic

for counterfactual analysis (e.g., Chetty, 2009; Arkolakis et al., 2012; Nakamura & Steinsson,

2018). Our identification result reveals that, across a broad class of structural models, the

empirically estimable causal effects of policy shocks are precisely such sufficient statistics.

Finally, to prove our identification result, we build on recent advances in solution methods

for structural macroeconomic models. At the heart of our analysis lies the fact that equilibria

in such models can be characterized by matrices of impulse response functions. As in Guren

et al. (2021) and Wolf (2020), we connect this sequence-space representation to empirically

estimable objects. In contemporaneous and independent work, De Groot et al. (2021) and

Hebden & Winker (2021) show how to use similar arguments to efficiently compute policy

counterfactuals by generating impulse responses to policy shocks from a structural model.

Our focus is not computational—we aim to calculate policy counterfactuals directly from

empirical evidence, forcing us to confront the fact that such evidence is limited.

Outline. Section 2 presents our identification result, mapping the effects of policy shocks

to counterfactuals for policy rules. Section 3 introduces our empirical methodology, and

Section 4 provides applications to monetary policy rule counterfactuals. Section 5 concludes.

6In a newer version of their paper, Barnichon & Mesters (2022) assume a model environment as restrictive
as ours as their baseline and consider the more general case as an extension. Another related contribution is
Kocherlakota (2019), who presents a dynamic policy game in which the policymaker can select the optimal
action via regression analysis. In his setting, the policy action does not cause the private sector to update
its beliefs about the future strategy of the policymaker. Therefore policymaker payoffs only depend on the
current policy choice and not on the future expected instrument paths that we emphasize in our analysis.
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2 From policy shocks to policy rule counterfactuals

We begin in Section 2.1 by presenting a stylized version of our identification argument in a

particular, familiar environment: the canonical three-equation New Keynesian model. We

then in Sections 2.2 to 2.5 extend the argument to a general class of infinite-horizon models

and discuss its scope and limitations.

The main identification result will be presented for a linearized perfect-foresight economy.

Due to certainty equivalence, the equilibrium dynamics of a linear model with uncertainty

coincide with the solution to such a linearized perfect-foresight environment. We thus empha-

size that all results presented below extend without any change to models with aggregate risk

solved using first-order perturbation techniques.7 In particular, the perfect-foresight tran-

sition paths that we characterize will correspond to expected transition paths—or impulse

response functions—in the analogous linearized economy with aggregate risk.

2.1 A simple example

We begin with a discussion of our identification argument in the context of a simple and

familiar model environment: the canonical three-equation New Keynesian model (Gaĺı, 2015;

Woodford, 2003). We also use this model to explain the relationship between our approach

to constructing policy counterfactuals and that of Sims & Zha (1995).

Model. The variables of the economy are two private-sector aggregates—output yt and

inflation πt—and a policy instrument—the nominal rate it. They are related through three

equations: an Euler equation and a Phillips curve as the private-sector block,

yt = yt+1 −
1

γ
(it − πt+1), (1)

πt = κyt + βπt+1 + (εt + θεt−1), (2)

and a simple Taylor rule as the policy rule,

it = ϕπt + ν0,t︸︷︷︸
contemp. shock

+
∞∑
ℓ=1

νℓ,t−ℓ︸ ︷︷ ︸
news shocks

. (3)

7For example see Fernández-Villaverde et al. (2016), Boppart et al. (2018) or Auclert et al. (2021) for a
detailed discussion of this point.
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In our perfect-foresight set-up, the two private-sector equations as well as the policy rule hold

for t = 0, 1, 2, . . . . These equations feature two kinds of disturbances. First, εt is a cost-push

shock; for the illustrative analysis in this section, we will find it useful to assume that it

induces a first-order moving average wedge in the Phillips curve (2). Second, there are the

policy shocks νℓ,t−ℓ; here, ν0,t is a conventional contemporaneous policy shock, while νℓ,t−ℓ

for ℓ > 0 denotes a deviation from the policy rule at time t announced at t− ℓ—an ℓ-period

“news” shock. These policy shocks will turn out to be crucial for our identification result. As

usual, given a vector of time-0 cost-push as well as policy (news) shocks {ε0, ν0,0, ν1,0, . . . }, a
perfect-foresight transition path—or impulse response function—are paths of {yt, πt, it} such

that (1) - (3) all hold at all t.

For the subsequent analysis, the key property of this model economy will turn out to be

that the coefficients in the private-sector equations (1) - (2) are independent of the policy

rule—i.e., γ, κ and β are unaffected by changes in ϕ. Equivalently, private-sector behavior

is affected by policy only through the current and future values of the policy instrument

it. Our general identification analysis in Sections 2.2 to 2.5 will discuss the generality and

limitations of this crucial assumption.

Object of interest. Under the baseline policy rule, the impulse response of the economy

to a cost-push shock is given as the solution of (1) - (3) for some cost-push shock ε0 together

with νℓ,0 = 0 for all ℓ. We wish to instead characterize the behavior of this economy in

response to ε0 not under the baseline policy rule (3), but instead under some counterfactual

policy rule of the form

it = ϕ̃πt (4)

where ϕ̃ ̸= ϕ. Note that this thought experiment supposes that the private sector perfectly

understands the change in rule: the new relation between i and π holds at t = 0, 1, 2, . . . . Our

identification result characterizes the information required to construct this counterfactual.

The identification argument. We consider an econometrician living in our simple

three-equation economy (1) - (3). Using conventional semi-structural time series methods

(Ramey, 2016), and with access to suitable identifying assumptions or instruments, that

econometrician can in principle estimate the dynamic causal effects of the cost-push shock εt

as well as the policy shocks {νℓ,t−ℓ}∞ℓ=0 under the baseline rule (3). Our main identification

result states that this knowledge is sufficient to predict the counterfactual propagation of

the shock εt under the alternative rule (4). While our formal result is stated and proved for
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a more general class of models in Sections 2.2 and 2.3, we here provide the core intuition

using our simple three-equation model structure.

The key idea is to choose time-0 policy shocks νℓ,0 to the baseline rule in order to mimic

the desired counterfactual policy rule. To develop the argument, note first that, because our

model has no endogenous state variables, the impulse response to a time-0 cost-push shock

will die out after t = 1, by our assumption on shock persistence. We collect the 2×1 transition

paths of {yt, πt, it} in response to a cost-push shock ε0 under the baseline rule as the vectors

{yyyϕ(ε0),πππϕ(ε0), iiiϕ(ε0)}. Similarly, contemporaneous and one-period-ahead policy shocks also

have no effects after t = 1. For ℓ ∈ {0, 1}, we collect the corresponding 2×1 impulse responses

under the baseline rule to a policy shock νℓ,0 as the vectors {Θy,νℓ,ϕ,Θπ,νℓ,ϕ,Θi,νℓ,ϕ} × νℓ,0;

e.g., Θy,νℓ,ϕ is the 2×1 impulse response path of y to an ℓ-period ahead shock to the baseline

ϕ-rule (3). Now consider setting the two policy shocks to values {ν̃0,0, ν̃1,0} so that, under

the baseline rule (3) and in response to the shock tuple {ε0, ν̃0,0, ν̃1,0}, the counterfactual

rule (4) holds at both t = 0 and t = 1 along the perfect foresight transition path; that is, we

solve the following two equations in the two unknowns {ν̃0,0, ν̃1,0}:

iiiϕ(ε0) + Θi,ν0,ϕν̃0,0 +Θi,ν1,ϕν̃1,0 = ϕ̃× [πππϕ(ε0) + Θπ,ν0,ϕν̃0,0 +Θπ,ν1,ϕν̃1,0] . (5)

The left-hand side of this equation gives us the impulse response of the interest rate following

our combination of three shocks {ε0, ν̃0,0, ν̃1,0} under the baseline rule (3), while the right-

hand side does the same for inflation, just scaled by ϕ̃. By our informational assumptions,

the econometrician can evaluate the system of equations (5) given ε0 and for any candidate

set of the two policy shocks {ν̃0,0, ν̃1,0}. Now suppose a solution {ν̃0,0, ν̃1,0} to (5) exists, and

then compute the responses of {yt, πt, it} to {ε0, ν̃0,0, ν̃1,0} under the baseline policy rule.8

The content of our identification result is that those impulse responses are in fact identical to

the impulse responses to ε0 alone under the counterfactual rule (4). Crucially, this alternative

computation uses only impulse responses under the baseline rule, and so in particular does

not require direct knowledge of the structural equations (1)-(3).

The intuition underlying the identification result is straightforward. Since the private

sector’s decisions only depend on the expected path of the policy instrument {i0, i1, . . . }, it
follows that it does not matter whether this path comes about due to the systematic conduct

of policy or due to policy shocks. Equation (5) leverages this logic, looking for a combination

8Our general discussion in Sections 2.2 and 2.3 will in detail address the question of when solutions to
equations like (5) actually exist.
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of date-0 policy shocks that results in the counterfactual policy rule (4) holding both at t = 0

and in expectation at t = 1.

We emphasize that this argument inherently relies on knowledge of the causal effects of

both the contemporaneous policy shock ν̃0,0 as well as the policy news shock ν̃1,0: it is only

with those two that we can enforce the counterfactual rule along the entire transition path

(which here consists of two time periods). With access only to the contemporaneous policy

shock ν̃0,0, on the other hand, the researcher could only impose the counterfactual rule at

t = 0, but not at t = 1. The proposal of Sims & Zha (1995) is then to subject the economy

to another surprise contemporaneous policy shock ν̃0,1 at t = 1, chosen to also enforce the

counterfactual policy rule at t = 1. The key difference relative to our construction is that

the private-sector block did not at t = 0 expect the counterfactual policy rule to hold at

t = 1; rather, the rule only holds at t = 1 because of yet another surprise. In other words,

under the approach of Sims & Zha, the counterfactual policy rule only holds ex post along

the equilibrium transition path, but not in ex ante expectation. As a result, as long as policy

at t = 1 matters for t = 0 decisions, the constructed counterfactual will differ from the true

counterfactual {yyyϕ̃(ε0),πππϕ̃(ε0), iiiϕ̃(ε0)}. We will further elaborate on this connection between

our identification result and the empirical methodology of Sims & Zha in Section 2.4.

Discussion & outlook. The identification result sketched in this section is special in two

respects: first, it is presented within the context of a particular explicit structural model; and

second, since impulse responses to ε0 are non-zero only for two periods, the result required

knowledge of the effects of two policy shocks. The remainder of this section will state and

prove our main identification result in the context of a general class of infinite-horizon models.

In terms of our informational requirements, the key change will be that the econometrician

now needs to know the causal effects of all policy shocks {νℓ,0}∞ℓ=0, rather than just the first

two. The economic intuition on the other hand will be exactly the same: the argument will

work as the long as the private-sector block of the model depends on the policy rule only

through the path of the policy instrument, as was the case here.

2.2 General model & objects of interest

We consider a linearized perfect-foresight, infinite-horizon model economy. Throughout,

boldface denotes time paths for t = 0, 1, 2, . . . , and all variables are expressed in deviations

from the model’s deterministic steady state.
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The economy is summarized by the system

Hwwww +Hxxxx+Hzzzz +Hεεεε = 000 (6)

Axxxx+Azzzz + ννν = 000 (7)

wt and xt are nw- and nx-dimensional vectors of endogenous variables, zt is a nz-dimensional

vector of policy instruments, εt is a nε-dimensional vector of exogenous structural shocks, and

νt is an nz-dimensional vector of policy shocks.9 The distinction between w and x is that the

variables in x are observable while those in w are not; in particular, x contains the outcomes

of interest for our econometrician as well as the arguments of the counterfactual policy rule

that she contemplates.10 The linear maps {Hw,Hx,Hz,Hε} summarize the non-policy block

of the economy, yielding nw + nx restrictions for each t. Our key assumption—echoing the

model of Section 2.1—is that the maps {Hw,Hx,Hz,Hε} do not depend on the coefficients of

the policy rule {Ax,Az}; instead, policy only matters through the path of the instrument z,

with the rule (7) giving nz restrictions on the policy instruments for each t. As in our simple

example, entries of the shock vectors εεε and ννν for t > 0 should again be interpreted as news

shocks. In particular, the policy shock vector ννν collects the full menu of contemporaneous

and news shocks to the prevailing policy rule at all horizons, thus generalizing the two-shock

set-up that was our focus in the simple three-equation model.

Given bounded {εεε,ννν}, an equilibrium is a set of bounded transition paths {www,xxx,zzz} that

solves (6) - (7). We assume that the baseline rule {Ax,Az} is such that an equilibrium exists

and is unique for any {εεε,ννν}.

Assumption 1. The policy rule in (7) induces a unique equilibrium. That is, the infinite-

dimensional linear map

B ≡

(
Hw Hx Hz

000 Ax Az

)
is invertible.

Given {εεε,ννν}, we write that unique solution as {wwwA(εεε,ννν),xxxA(εεε,ννν), zzzA(εεε,ννν)}. As in the

simple example, we often focus on impulse responses to exogenous shocks εεε when the policy

9The boldface vectors {www,xxx,zzz,εεε,ννν} stack the time paths for all variables (e.g., xxx = (xxx′1, . . . ,xxx
′
nx
)′), and

the linear maps {Hw,Hx,Hz,Hε} are conformable.
10For expositional simplicity, we do not include www as an argument of the baseline policy rule (7), though

doing so would not pose a problem. The key restriction is that the counterfactual policy rule only features
variables observable to the econometrician.
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rule is followed perfectly (ννν = 000); with some slight abuse of notation we will simply write

those impulse responses as {wwwA(εεε),xxxA(εεε), zzzA(εεε)}.

Discussion & scope. Our identification results in Section 2.3 and the empirical analysis

in Section 3 will apply to any structural model that can be written in the general form (6)

- (7). As emphasized before, in addition to linearity, the key property of the model for our

purposes is that policy enters the non-policy block of the economy only through the realized

path of the policy variables zzz; equivalently, in the linearized economy with aggregate risk,

policy matters only through its effects on the expected future path of the instrument z. How

restrictive are those assumptions?

Our first observation is that many of the explicit, parametric structural models used

for counterfactual and optimal policy analysis in the classical Lucas program literature fit

into our framework. Such models are routinely linearized, and their linear representation

features the separation between policy rule and non-policy block that our results require.

We here illustrate this point by giving several examples of well-known models that are

consistent with our assumptions. The simple model in Section 2.1 has already illustrated that

one particular canonical model environment—the textbook three-equation New Keynesian

model—fits into our framework.11 By the exact same line of reasoning, even workhorse

estimated business-cycle models (e.g., Christiano et al., 2005; Smets & Wouters, 2007) as well

as recent quantitative HANK models (e.g., Auclert et al., 2020; McKay & Wieland, 2021)

fit into our structure. For example, in standard HANK-type models, the standard Euler

equation of the representative household is simply replaced by a more general “aggregate

consumption function” (e.g., Auclert et al., 2018; Wolf, 2021):

ccc = C(yyy,πππ, iii, εεεd) = Cyyyy + Cππππ + Ciiii+ εεεd

where c is consumption, y is income, π is inflation, i is the nominal rate, and εd is a demand

shock. Such models continue to fit into our framework precisely because the derivative

matrices C• depend only on the model’s deterministic steady state, and not on policy rules

that influence the economy’s fluctuations around that steady state (e.g., a Taylor rule for

nominal rates). We will give a concrete numerical illustration of our identification result in

the context of a quantitative HANK-type model in Section 2.4. Finally, as we discuss further

11For reference, we in Appendix A.1 explicitly write down the model (1) - (3) in the form of our general
matrix system (6) - (7).
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in Appendix A.1, several interesting behavioral models (such as those of Gabaix (2020) or

Mankiw & Reis (2002)) are also consistent with our assumptions.

While thus clearly quite general, our framework also has some important limitations.

Recall that our two key restrictions are (i) linearity and (ii) the way the policy instrument

is allowed to shape private-sector behavior. The separation between policy and non-policy

block embedded in (ii) is violated in some structural models. Important examples are envi-

ronments that feature an asymmetry of information between the policymaker and the private

sector (like Lucas, 1972). In such models, private-sector agents solve a filtering problem, and

in general the coefficients of the policy rule will matter for this filtering problem both through

the induced movements of the policy instrument and through the information contained in

those movements. The separation between the private-sector and policy blocks of the model

at the heart of our results thus breaks down—that is, the coefficients in Hx depend directly

on the policy rule (see Appendix A.2 for a formal derivation).

As we discuss in detail in Appendix A.7, the linearity restriction (i) on the other hand is

not conceptual, but instead practical. By linearity, the effects of the policy instrument are

sign-, size-, and state-invariant. Given certainty equivalence, we can thus focus on expected

policy instrument paths, reducing the informational requirements of our identification results.

The costs of linearity are twofold. First, our identification results will generally not yield

globally valid policy counterfactuals. Second, we will be able to construct counterfactuals for

alternative policy rules that change the policymaker’s response to aggregate perturbations

of the macro-economy (such as Taylor rules), but our results are unlikely to apply to policies

that change the model’s steady state (such as changes in the long-run inflation target).

Objects of interest. As in our simple model, we wish to learn about systematic policy

rule counterfactuals. Specifically, we consider an alternative policy rule

Ãxxxx+ Ãzzzz = 000 (8)

This alternative policy rule is also assumed to induce a unique equilibrium.

Assumption 2. The policy rule in (8) induces a unique equilibrium. That is, the infinite-

dimensional linear map

B̃ ≡

(
Hw Hx Hz

000 Ãx Ãz

)
is invertible.
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Given this alternative rule Ã, we ask: what are the dynamic response paths xxxÃ(εεε) and

zzzÃ(εεε) to some given exogenous non-policy shock path εεε?

As a special case of the general counterfactual rule (8), we will study optimal policy rules

corresponding to a given loss function. Specifically, we consider a policymaker with a simple

exogenously given quadratic loss function of the form

L =
nx∑
i=1

λixxx
′
iWxxxi (9)

where i indexes the nx distinct (observable) aggregates collected in x, λi denotes policy

weights, and W = diag(1, β, β2, · · · ) allows for discounting.12 As for our general counterfac-

tual rule, we assume that the optimal policy problem has a unique solution.

Assumption 3. Given any vector of exogenous shocks εεε, the problem of choosing the policy

variable zzz to minimize the loss function (9) subject to the non-policy constraint (6) has a

unique solution.

We are then interested in two questions. First, what policy rule is optimal for such a

policymaker? Second, given that optimal rule (A∗
x,A∗

z), what are the corresponding dynamic

response paths xxxA∗(εεε) and zzzA∗(εεε) for a given non-policy shock path εεε?

Finally, for both general as well as optimal counterfactual policy rules, we would like to go

beyond counterfactuals conditional on particular non-policy shock paths εεε, and instead also

predict the effects of a rule change on unconditional macroeconomic dynamics. In particular,

we would like to predict how the change in policy rule would affect the unconditional second-

moment properties of the observed macroeconomic aggregates x.

The objective of the remainder of this section is to characterize the information required to

recover these desired policy counterfactuals. The key insight is that, exactly as in our simple

model, all of the required information can in principle be recovered from data generated

under the baseline policy rule.

12We emphasize that our results are completely silent on the shape of the loss function, with structural
modeling still the most natural way of obtaining a mapping from observables to welfare. We instead take
as given the loss function and ask what kind of empirical evidence would be most useful to figure out how
to minimize the loss. We furthermore note that our focus on a separable quadratic loss functions is in line
with standard optimal policy analysis, but not essential. As shown in Appendix A.3, our results extend to
the non-separable quadratic case, where the loss is now given by xxx′Qxxx for a weighting matrix Q. While our
approach in principle also applies to even richer loss functions, the resulting optimal policy rule will generally
not fit into the form (8).
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2.3 Identification results

We begin by defining the dynamic causal effects that lie at the heart of our identification

results. By Assumption 1, we can write the solution to the system (6) - (7) aswwwxxx
zzz

 = −B−1 ×

(
Hε 000

000 I

)
︸ ︷︷ ︸

≡ΘA

×

(
εεε

ννν

)

The linear map ΘA collects the impulse responses of www, xxx and zzz to the non-policy and

policy shocks (εεε,ννν) under the prevailing baseline policy rule (7) with parameters A. We will

partition it as

ΘA ≡

Θw,ε,A Θw,ν,A

Θx,ε,A Θx,ν,A

Θz,ε,A Θz,ν,A

 . (10)

All of our identification results will require knowledge of {Θx,ν,A,Θz,ν,A}—the impulse

responses of the policy instruments z and macroeconomic observables x to contemporaneous

as well as all possible future shocks ννν to the prevailing policy rule. Furthermore, to construct

counterfactual paths that correspond to a given non-policy shock sequence εεε, we also require

knowledge of the dynamic causal effects of that particular shock sequence under the baseline

policy rule, {xxxA(εεε), zzzA(εεε)}. We emphasize that, in principle, all of these objects are estimable

using data generated under the baseline policy rule: for example, given valid instrumental

variables for all the distinct policy shocks ννν as well as a single instrument for the non-

policy shock path εεε, the required entries of the Θ’s can be estimated using semi-structural

time-series methods (e.g., see Ramey, 2016, for a review).

These informational requirements are the natural generalization of those for the simple

model in Section 2.1. First, since we are now considering an infinite-horizon economy, any

given shock generates entire paths of impulse responses, corresponding to the rows of the Θ’s.

Second, rather than two policy shocks, we now need to know causal effects corresponding to

the full menu of possible contemporaneous and news shocks ννν—all columns of the Θν ’s.

General counterfactual rule. We begin with the main object of interest—policy

counterfactuals after a non-policy shock sequence εεε under an alternative policy rule.

Proposition 1. For any alternative policy rule {Ãx, Ãz} that induces a unique equilibrium,
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we can recover the policy counterfactuals xxxÃ(εεε) and zzzÃ(εεε) as

xxxÃ(εεε) = xxxA(εεε, ν̃νν) ≡ xxxA(εεε) + Θx,ν,A × ν̃νν (11)

zzzÃ(εεε) = zzzA(εεε, ν̃νν) ≡ zzzA(εεε) + Θz,ν,A × ν̃νν (12)

where ν̃νν is the unique solution of the system

Ãx [xxxA(εεε) + Θx,ν,A × ν̃νν] + Ãz [zzzA(εεε) + Θz,ν,A × ν̃νν] = 000. (13)

Proof. The equilibrium system under the new policy rule can be written as(
Hw Hx Hz

000 Ãx Ãz

)wwwxxx
zzz

 =

(
−Hε

000

)
εεε (14)

By Assumption 2 we know that (14) has a unique solution {xxxÃ(εεε), zzzÃ(εεε)}. To characterize

this solution as a function of observables, suppose instead that we could find a ν̃νν that solves

(13). Since (6) also holds under the baseline policy rule, and since (13) imposes the new

policy rule, it follows that any (xxxA(εεε, ν̃νν), zzzA(εεε, ν̃νν)) with ν̃νν solving (13) are also part of a

solution of (14). Since by assumption (14) has a unique solution, it follows that the system

(13) is solved by at most one ν̃νν.

It remains to establish that the system (13) has a solution. For this consider the candidate

ν̃νν = (Ãx −Ax)xxxÃ(εεε) + (Ãz −Az)zzzÃ(εεε). Since the paths {wwwÃ(εεε),xxxÃ(εεε), zzzÃ(εεε)} solve (14), it

follows that they are also a solution to the system

(
Hw Hx Hz

000 Ax Az

)wwwxxx
zzz

 = −

(
Hεεεε

(Ãx −Ax)xxxÃ(εεε) + (Ãz −Az)zzzÃ(εεε)

)
(15)

But by Assumption 1 we know that the system (15) has a unique solution, so indeed the

paths {wwwÃ(εεε),xxxÃ(εεε), zzzÃ(εεε)} are that solution. It then follows from the definition of ΘA in

(10) that the candidate ν̃νν also solves (13), completing the argument.

It follows from Proposition 1 that we can recover the desired counterfactual as a function

of {Θx,ν,A,Θz,ν,A} and {xxxA(εεε), zzzA(εεε)} alone.13 The key building block equation (13) is the

13While Proposition 1 applies to a particular shock path εεε, it is immediate that the exact same argument
also applies to a particular historical scenario (as studied in Antolin-Diaz et al., 2021): a historical scenario
is simply an observed set of paths xxxA and zzzA for a given time period in history, and we can use the logic of
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infinite-horizon analogue of the bivariate system (5) from our simple two-period example

in Section 2.1. The intuition is exactly the same: since we know the effects of all possible

perturbations ννν of the baseline rule, we can always construct a date-0 shock vector ν̃νν that

mimics the equilibrium instrument path under the new instrument rule. But since the first

model block (6) depends on the policy rule only via the expected instrument path, the

equilibrium allocations under the new counterfactual rule and the perturbed prevailing rule

are the same.14 The only difference relative to the simple model is that, because we now

consider an infinite-horizon setting, we in general require evidence on contemporaneous and

all possible future news shocks to the baseline rule in order to be able to mimic an arbitrary

alternative policy rule.

Optimal policy. A very similar argument allows us to recover optimal policy rules cor-

responding to a given loss function.

Proposition 2. Consider a policymaker with loss function (9). For any εεε, the solution to

the optimal policy problem is uniquely implemented by the rule {A∗
x,A∗

z} with

A∗
x =

(
λ1Θ

′
x1,ν,AW,λ2Θ

′
x2,ν,AW, . . . , λnxΘ

′
xnx ,ν,AW

)
, (16)

A∗
z = 000. (17)

Given {A∗
x,A∗

z}, the corresponding counterfactual paths under the optimal policy rule, xxxA∗(εεε)

and zzzA∗(εεε), are characterized as in Proposition 1.

Proof. The solution to the optimal policy problem is characterized by the following first-order

conditions:

H′
w(I ⊗W )φφφ = 000 (18)

(Λ⊗W )xxx+H′
x(I ⊗W )φφφ = 000 (19)

H′
z(I ⊗W )φφφ = 000 (20)

where Λ = diag(λ1, λ2, . . . ) and φ is the multiplier on (6). By Assumption 3 we know that

the system (18) - (20) together with (6) has a unique solution {xxx∗(εεε), zzz∗(εεε),www∗(εεε),φφφ∗(εεε)}.

Proposition 1 to recover the analogous counterfactual historical scenario xxxÃ and zzzÃ.
14Assumption 2 is important for this argument to work. First, if there is no unique equilibrium under the

counterfactual rule, then the construction in Proposition 1 will only recover one possible equilibrium; more
specifically, it will recover the fundamental (minimum state variable, or MSV) equilibrium. Second, if the
counterfactual rule is such that no equilibrium exists, then (13) will not have a solution.
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Now consider the alternative problem of choosing deviations ννν∗ from the prevailing rule

to minimize (9) subject to (6) - (7). This second problem gives the first-order conditions

H′
w(I ⊗W )φφφ = 000 (21)

(Λ⊗W )xxx+H′
x(I ⊗W )φφφ+A′

xWφφφz = 000 (22)

H′
z(I ⊗W )φφφ+A′

zWφφφz = 000 (23)

Wφφφz = 000 (24)

where φz is the multiplier on (7). It now follows from (24) that φφφz = 000. But then (21) -

(23) together with (6) determine the same unique solution for {xxx,zzz,www} as before, and ννν∗

adjusts residually to satisfy (7). The original problem and the alternative problem are thus

equivalent. Next note that, by Assumption 1, we can re-write the alternative problem’s

constraint set as wwwxxx
zzz

 = ΘA ×

(
εεε

ννν∗

)
(25)

The problem of minimizing (9) subject to (25) gives the optimality condition

nx∑
i=1

λiΘ
′
xi,ν,AWxxxi = 0 (26)

By the equivalence of the policy problems, it follows that (26) is an optimal policy rule,

taking the form (16) - (17). Finally, the second part of the result follows from Proposition 1

since (26) is just a special example of a policy rule {Ãx, Ãz}.

Proposition 2 reveals that, in conjunction with a given policymaker loss function, the

information required to construct valid counterfactuals for arbitrary policy rules also suffices

to characterize optimal policy rules.15 The intuition is exactly as before: since we know the

15Note that, by mapping our perfect foresight economy to a linearized economy with aggregate risk, we
can re-write that optimal policy rule as a forecasting targeting rule (Svensson, 1997):

nx∑
i=1

λiΘ
′
xi,ν,AWEt [xxxi] = 000, (27)

where now xxxi = (xit, xit+1, . . . )
′. In words, expectations of future targets must always minimize the pol-

icymaker loss within the space of (expected) allocations that are implementable via changes in the policy

18



causal effects of every possible policy perturbation ννν on the policymaker targets xxx, we in

particular know the space of those targets that is implementable through policy actions. At

an optimum, we must be at the point of this space that minimizes the policymaker loss. As

before, it does not matter whether this optimum is attained through some systematic policy

rule or through shocks to an alternative rule.

Unconditional second-moment properties. While Propositions 1 and 2 predict coun-

terfactual dynamics conditional on particular non-policy shock paths εεε, researchers may also

be interested in the unconditional second-moment properties of macroeconomic aggregates

following a change in policy rule. Of course, if researchers have estimated the effects of all

distinct non-policy shocks hitting the economy, then such unconditional analysis is simple:

apply Propositions 1 and 2 for each such shock and then collect the results in the form of a

vector moving average representation.

In practice, however, researchers may not be able to isolate all distinct aggregate non-

policy shocks. Our third identification result states that, in some cases, it is nevertheless

possible to recover the desired counterfactual second-moment properties. Since the result

requires some investment in additional notation, we only state the main idea here and relegate

all details to Appendix A.4. The key assumption allowing us to make progress is that of

“invertibility”: we need to assume that the structural vector moving average representation

of the observable data x and z under the baseline policy rule is invertible with respect

to the structural shocks driving the economy. This assumption, while restrictive (Plagborg-

Møller & Wolf, 2021a), is routinely imposed in conventional Structural Vector Autoregression

analysis (Fernández-Villaverde et al., 2007). Under this assumption, researchers need not be

able to separately observe all of the individual structural shocks; instead, it suffices to simply

apply our counterfactual prediction results in Propositions 1 and 2 to the Wold innovations

and then again collect the results in the form of a counterfactual vector moving average.

Appendix A.4 also discusses why this argument fails in the non-invertible case.

Discussion. The identification results in Propositions 1 and 2 offer a novel bridge between

the “Lucas program” (see Christiano et al., 1999)—a strategy that relies on micro-founded

structural models to form policy counterfactuals—and the purely empirical approach of Sims

& Zha (1995). The propositions reveal that, under our assumptions, impulse responses to

contemporaneous and news policy shocks—objects that are estimable using semi-structural

stance. For a timeless perspective, (27) must apply to revisions of policymaker expectations at each t.
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empirical techniques—suffice to predict the effects of changes in systematic policy rules. Key

to our argument is the use of multiple distinct policy shocks. By using many such shocks

(all at date 0), counterfactual rules can be imposed not just ex post but also in ex ante

expectation, and this turns out to be enough to fully sidestep the Lucas critique. We further

elaborate on the connection between our results and the approach of Sims & Zha—which

uses one policy shock, set to a new level at each date t—in Section 2.4.

Our results also resonate with recent attempts to bring insights from the “sufficient

statistics” approach popular in public finance to macroeconomics (Chetty, 2009; Nakamura

& Steinsson, 2018). For a large family of structural models and policy rule counterfactuals,

policy shock impulse responses turn out to be precisely such sufficient statistics.

2.4 Illustration & relation to Sims & Zha (1995)

This section provides a visual illustration of our theoretical identification results and their

relationship to the canonical approach of Sims & Zha (1995). As our laboratory we use the

structural HANK model of Wolf (2021), with details of the model parameterization relegated

to Appendix A.1. In this environment we compute policy counterfactuals in multiple ways:

by using the structural equations of the model to simply solve the model with a counterfactual

policy rule; by using the approach of Sims & Zha; and by using our identification results.

We begin by solving the model with a baseline policy rule of

it = ϕππt +
∞∑
ℓ=0

νℓ,t−ℓ (28)

and where ϕπ = 1.5. In particular, we solve for a) the impulse responses {xxxA(εεε), zzzA(εεε)} to a

contractionary cost-push shock εt under (28) and b) the causal effects of contemporaneous

and news policy shocks ννν to (28), {Θx,ν,A,Θz,ν,A}. We emphasize that those causal effects

would be estimable for an econometrician living in our model and with access to valid

instruments for the cost-push shock εt as well as the policy shocks {ν0,t, ν1,t, . . . }.
We now entertain the following counterfactual policy rule:

it = ϕiit−1 + (1− ϕi)(ϕππt + ϕyyt) (29)

for ϕi = 0.9, ϕπ = 2, ϕy = 0.5. The grey and orange lines in all three panels of Figure 1

show the true model-implied impulse responses of output and inflation to a cost-push shock

εt under the baseline rule (28) (grey) and the counterfactual rule (29) (orange), where both
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of these lines are computed from the structural equations of the model. We now seek to

recover the desired counterfactual (orange) only through knowledge of the dynamic causal

effects of policy shocks, and without using the structural equations of the model.

The panels of Figure 1 show results for three possible strategies to predict the counterfac-

tual propagation of the cost-push shock. The top panel begins with the empirical strategy of

Sims & Zha (1995). Here the econometrician was only able to estimate the dynamic causal

effects of the first entry of ννν (i.e., the contemporaneous shock ν0,t), and then uses a sequence

of such shocks—one at each t = 0, 1, 2, . . .—to enforce the counterfactual rule (29) ex post

along the equilibrium transition path. The right panel shows the sequence of policy shocks

that implements this strategy, and the blue dashed lines in the left and middle panels give the

responses of output and inflation to the original cost-push shock plus the derived sequence

of policy shocks. The main takeaway is that those blue dashed lines are not equal to the true

counterfactual (orange). Intuitively, the issue is that the contemplated counterfactual rule is

only imposed ex post, but not in ex ante expectation. Since expectations about the future

affect the present, enforcing the rule through ex post surprises is not the same as switching

and committing to a different rule from time t = 0 onwards.16 Visually, the importance of ex

post surprises is evident in the right panel: to map the baseline rule into the counterfactual

rule, the econometrician requires a sequence of expansionary policy shocks ν0,t, with those

shocks remaining large throughout the entire first year after the shock.

The middle and bottom panels now illustrate the core logic of our identification result—

with multiple policy shocks, the econometrician can impose the counterfactual rule not just

ex post, but also in expectation. As a warmup, the middle panel considers a case in which

the econometrician is able to estimate the causal effects of the first ns = 2 entries of ννν (i.e., a

contemporaneous and a one-period forward guidance shock). Such access to multiple shocks

suggests a natural generalization of Sims & Zha: use the available ns policy shocks at each

t ≥ 0 to enforce the desired counterfactual rule not only ex post (as Sims & Zha do with one

shock), but also in ex ante expectation for the next ns−1 periods.17 Since the counterfactual

policy rule is now imposed both ex post and in ex ante expectation for at least one period, the

predicted counterfactuals (blue dashed) are closer to the truth (orange); correspondingly, the

policy shock sequences in the right panel feature smaller ex post surprises dated t = 1, 2, . . . .

The bottom panel—which corresponds to our identification result—simply continues this

16It follows from this discussion that, if the private sector were not at all forward-looking, then one shock
would already be enough for Lucas critique-robust counterfactuals.

17We present implementation details for this approach in Appendix A.6.
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Sims & Zha Strategy

2 Shocks: Match 1-Period-Ahead Expectations

Full Date-0 Shocks: Match All Expectations

Figure 1: The grey and orange lines in the left and middle panels show output and inflation
responses to the cost-push shock εt under the policy rules (28) and (29) in the HANK model. The
dark blue dashed lines give output and inflation counterfactuals constructed through the policy
shocks on the right, set to enforce the counterfactual rule ex post and in expectation for the next
ns − 1 periods, for ns = 1 (top panel, = Sims & Zha), ns = 2 (middle panel) and ns = ∞ (bottom
panel). Lighter shades of blue correspond to news about policy at longer horizons.
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logic. With access to the causal effects of the full vector of policy shocks ννν, the econometrician

can rely purely on date-0 shocks (right panel) to enforce the counterfactual rule not just ex

post but also in ex ante expectation. Under our assumptions, doing so suffices to circumvent

the Lucas critique and recover the correct systematic policy rule counterfactual.

To summarize, the top and bottom right panels illustrate the core difference between the

empirical method of Sims & Zha and our identification result. In the former, the researcher

has access to a single policy shock, and uses a sequence of realizations of that shock to enforce

the counterfactual rule. In our approach, the researcher has access to many shocks and only

uses shocks at date-0 to enforce the counterfactual rule. Our identification result thus clearly

has substantially higher informational requirements, but this increase in information brings

with it the similarly substantial benefit of robustness to Lucas critique concerns.

2.5 Discussion

The central takeaway from the analysis in this section is that—under our maintained struc-

tural assumptions—policy rule counterfactuals can at least in principle be constructed purely

through empirical measurement, in a way that is robust to Lucas critique concerns. In the

remainder of the paper we discuss how to operationalize our insights. The main challenge is

that the informational requirements underlying our identification results are quite high: the

researcher needs evidence on the dynamic causal effects of the full menu of contemporaneous

and news policy shocks at all possible horizons. Section 3 presents an empirical strategy for

the relevant case of researchers with access only to a few distinct identified policy shocks.

We then in Section 4 demonstrate the applicability of the method by constructing several

systematic monetary policy rule counterfactuals.

3 Empirical method

This section presents our empirical method for constructing policy counterfactuals with

evidence on multiple, but a limited number of, distinct policy shocks. Section 3.1 illustrates

the basic logic of our method with a simple example based on the famous oil shock application

of Bernanke et al. (1997). Section 3.2 then introduces the general methodology.

Throughout, the discussion in this section will leverage the following connection between

our theoretical identification results in Section 2.3 and empirical evidence on policy shock

propagation. Our theoretical identification analysis was phrased in terms of policy shocks ννν

that perturb the prevailing policy rule {Ax,Az} horizon by horizon. Rather than expressing
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everything in terms of shocks ννν, we could however equivalently phrase the informational

requirements underlying our identification results in terms of policy instrument paths : to

implement our results, the econometrician needs to know the dynamic causal effects associ-

ated with all possible time paths of the policy instrument zzz.18 Empirical work that studies

a given policy shock simply gives us the dynamic causal effects associated with a particular

path of the policy instrument. Our empirical method takes this information as given and

uses it to construct the desired policy counterfactual.

3.1 Illustrative example

Like Bernanke et al. (1997), we consider an econometrician that wishes to predict the (coun-

terfactual) propagation of oil price shocks in the absence of a monetary policy reaction—the

canonical “zeroing-out” policy counterfactual.19

Figure 2 provides a stylized representation of how the econometrician could use our iden-

tification result to construct the desired policy counterfactual. She begins by estimating the

effects of an oil price shock under the prevailing monetary reaction function, exactly as in

Bernanke et al. (1997). In the stylized example here, the oil shock leads to an increase in

prices (top left panel); the monetary authority furthermore leans against this inflationary

pressure through an increase in nominal interest rates (bottom left panel). By our identifi-

cation result, she next needs to estimate the effects of a monetary policy shock—or a linear

combination of such policy shocks—that moves nominal interest rates from date-0 onwards

exactly like the observed endogenous interest rate response to the oil shock. The two middle

panels show two possible scenarios. In the left one, the econometrician was able to identify

a single monetary policy shock that induces the exact same path of nominal interest rates

as the oil shock. In the right one, she estimated two separate policy shocks (one solid, one

dashed), with the sum of the two replicating the rate path after the oil shock. In both cases,

18Formally, what we are discussing here is nothing but a change of basis: we solve for the policy rule
counterfactual not in terms of shocks to some (arbitrary) baseline rule {Ax,Az}, but directly in terms of
policy instrument paths. This switch of basis is without loss of generality as long as the policymaker can
implement any possible path of the policy instrument (i.e., the map Θz,ν,A is invertible). While the “rule
shock” ννν perspective is much more natural in theory, the “policy instrument path” zzz perspective allows a
more straightforward connection with data.

19In notation of Section 2, such “zeroing-out” corresponds to a counterfactual policy rule that sets zzz = 000.
It is of course well-known that rules of this sort—for example a nominal interest rate peg—often lead to
equilibrium indeterminacy, violating Assumption 2 (Sargent & Wallace, 1981). As discussed in Footnote 14,
the counterfactuals presented here should thus be interpreted as corresponding to the fundamental MSV
equilibrium associated with this policy rule.

24



Stylized representation of the empirical method

Figure 2: Inflation (π) and interest rate (i) impulse responses to: oil shock under the baseline rule
(left panel, grey); monetary policy shocks to the baseline rule (two middle panels, blue and blue
dashed); and oil shock under the counterfactual rule (right panel, orange). All impulse responses
are purely illustrative; they do not come from any empirical exercise or structural model.

the identified policy shocks decrease inflation (top panels). Given either of these estimates,

the econometrician can apply our identification result: she simply needs to subtract the

impulse responses shown in the second or third column from those in the first column. The

results are shown in the fourth column: interest rates are now by construction unresponsive,

and inflation increases by more than under the baseline policy response. It follows from

Proposition 1 that any structural model consistent with (i) our general model framework (6)

- (7), (ii) the original propagation of the oil shock (first column) and (iii) either one of the

two middle columns on monetary policy shock propagation will necessarily agree with this

“zeroing-out” counterfactual (orange) displayed in the right panel.

The illustrative example in Figure 2 is stylized in two ways. First, using either of the

estimated monetary policy shocks, the econometrician was able to perfectly enforce the de-

sired policy counterfactual using only date-0 shocks. In actual applications this will not

be possible in general. Second, the counterfactual rule that we considered was particularly

simple, taking the form of an exogenous interest rate path rather than a more complicated
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relationship between endogenous equilibrium outcomes (like, e.g., a Taylor rule). Our em-

pirical method, presented in the next section, is the natural generalization of the stylized

example: the researcher considers an arbitrary counterfactual rule of our general form (8),

and enforces it as well as possible using the available policy shock evidence.

3.2 Counterfactuals with a limited number of policy shocks

We consider a researcher that has access to estimates of ns distinct policy shocks associated

with ns distinct response paths of the policy instrument z.20 We denote the dynamic causal

effects of these shocks {Ωx,A,Ωz,A}, where each of the ns columns of the Ω’s gives the impulse

response to a distinct identified policy shock. Given these lower-dimensional causal effect

maps, and given a non-policy shock εεε and a counterfactual rule {Ãx, Ãz}, the proof strategy
of Proposition 1 will fail in general. We would now need to set

Ãx(xxxA(εεε) + Ωx,A × sss) + Ãz(zzzA(εεε) + Ωz,A × sss) = 000 (30)

where sss ∈ Rns denotes weights assigned to the ns empirically identified policy shocks at date

0. The problem is that this system of T equations (where T is the large maximal transition

horizon) in ns unknowns will generically not have a solution. So how can researchers proceed?

Lucas critique-robust method. Our main proposal is to simply select the weights sss

on the ns date-0 shocks to enforce the desired counterfactual rule as well as possible. In

practice, this means solving a straightforward regression problem:

min
sss

||Ãx(xxxA(εεε) + Ωx,A × sss) + Ãz(zzzA(εεε) + Ωz,A × sss)||. (31)

The output of the simple problem (31) is the best approximation to the desired policy coun-

terfactual within the space of empirically identified policy shock paths. By our identification

results in Section 2 and because all shocks are dated t = 0 (i.e., no ex post surprises), this

approach is robust to the Lucas critique. In the illustrative example of Figure 2, the avail-

able evidence on policy shocks in the middle panels was sufficient to set the argument of

(31) exactly to zero. In actual applications, on the other hand, we will not perfectly enforce

20In saying that a researcher has access to policy shocks that induce different instrument paths, we are
implicitly assuming that these differences in instrument paths reflect different identification strategies captur-
ing different linear combinations of the shocks ννν, rather than statistical noise or violations of the identifying
assumptions. We justify this interpretation in our empirical application in Section 4.
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the desired policy counterfactual; rather, we will approximate it as closely as possible. The

richer the menu of policy shocks we have access to, the better the approximation will become,

eventually converging to the truth (as ns → ∞). The important limitation of our approach is

thus that, for small ns, it will not always be possible to construct an accurate approximation

of the desired counterfactual rule—sometimes we will be able to set the implementation error

in (31) close to zero, other times it will be large. The practical usefulness of our proposed

method is thus an inherently application-dependent question.

By Proposition 2, our identification results also allow researchers to learn about optimal

counterfactual policy rules, given some exogenously specified loss function. Appendix B.2

shows how to apply our Lucas critique-robust method to such questions of optimal policy

design. Very briefly, the idea is to use date-0 policy shocks to reduce the policymaker loss as

much as possible. Our approach thus minimizes the loss function by perturbing the baseline

policy response in directions spanned by the set of empirically identified policy shocks.21

Alternative: a multi-shock refinement of Sims & Zha (1995). In keeping with

this paper’s overarching focus on robustness to Lucas critique concerns, we will in our appli-

cations in Section 4 present results only for our baseline method. However, we note that our

results also suggest a refinement of Sims & Zha (1995)—a refinement that relies on stronger

assumptions than our baseline method, but weaker assumptions than the original one-shock

Sims & Zha approach. Given the popularity of the Sims & Zha strategy we briefly discuss

this refinement here, with implementation details provided in Appendix B.1.

Recall that the Sims & Zha approach enforces the desired counterfactual policy rule by

subjecting the economy to a sequence of policy shocks at t = 0, 1, . . . . As we discussed in

Section 2.4, it is precisely the ex post surprises at t ≥ 1 that cause Lucas critique concerns:

the counterfactual policy rule holds at each t, but is not expected to hold from t+1 onwards.

The idea of our refinement is that a researcher with access to multiple empirically identified

policy shocks can do more than just enforce the desired counterfactual rule ex post—she can

use the additional degrees of freedom to also at least partially enforce the counterfactual rule

in expectation, exactly as we did for illustration purposes in the middle panel of Figure 1.

While our main methodology relies only on date-0 shocks, this refinement of Sims & Zha

21This part of our method is related to work by Barnichon & Mesters (2021). Those authors argue that,
under quite general conditions, evidence on policy shock impulse responses can be used to test the optimality
of a policy decision. Our method makes stronger assumptions—notably the separation of the policy and
non-policy blocks in (6) - (7)—allowing us to explicitly characterize optimal policy (and optimal policy
rules), as in Proposition 2.
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instead still features ex post surprises, though strictly smaller than under the original single-

shock Sims & Zha approach. If these ex post surprises can be made small enough, then

the researcher may actually feel comfortable in ignoring any possible expectational effects

related to the anticipation of such shocks.

4 Application to monetary policy counterfactuals

This section applies our empirical method to construct monetary policy rule counterfactuals.

We proceed in two steps. First, in Section 4.1, we provide a brief review of existing evidence

on monetary policy shock transmission—the key input to our empirical method. Second, in

Section 4.2, we apply our method to study the propagation of investment-specific technology

shocks under various counterfactual monetary rules.

4.1 A review of monetary policy shock evidence

In order to implement our empirical method, we require evidence on multiple distinct mone-

tary policy shocks that induce different time paths for nominal interest rates. The empirical

literature has devised many different strategies to isolate quasi-random variation in the con-

duct of monetary policy (see Ramey, 2016, as well as the discussion below). Since monetary

authorities control current and future expected interest rates, monetary policy is inherently

multi-dimensional, and so it is not surprising that different policy shocks are likely to cap-

ture different dimensions of policy: some experiments will capture transitory impulses, while

others reflect more persistent deviations from the policy rule.22 The empirical evidence that

we leverage is consistent with this observation.

Our applications in Section 4.2 will use the two arguably most canonical available mone-

tary policy shock series: those of Romer & Romer (2004) and Gertler & Karadi (2015). Im-

portantly, those two shock series are likely to be informative about very different monetary

experiments. While the Romer & Romer shock is rather short-lived (i.e., mostly reflecting

contemporaneous shocks ν0,t), the Gertler & Karadi shock is well-known to move longer-term

nominal interest rates and is thus more likely to have a larger forward guidance component

(i.e., in greater part reflecting νℓ,t for ℓ > 0). Our applications in the next section reveal

22A related argument was made by Sims (1998): there is no need for different identification strategies to
yield correlated measures of policy shocks, simply because the identified shocks may capture different sources
of variation in policy. We thank our discussant Valerie Ramey for pointing out that connection.
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that even this relatively modest amount of evidence is in fact enough to tightly characterize

several important monetary policy rule counterfactuals.

While we have chosen to focus on the most well-known and well-understood policy shock

series for our main applications, we emphasize that similar arguments about interest rate

time profiles apply just as well to several other popular monetary policy shock series. First,

as we discuss in detail in Appendix C.4, the shock series of Miranda-Agrippino & Ricco

(2021) and Aruoba & Drechsel (2022)—shock measures that seek to improve on the original

series of Romer & Romer and Gertler & Karadi in various ways—induce similar dynamics,

with one shock more transitory and the other more persistent. Second, some prior work has

explicitly split monetary shock series by their effects on different points of the yield curve,

exactly as required by our theory. Estimates of this type are available from Gürkaynak

et al. (2005), Antolin-Diaz et al. (2021), and Inoue & Rossi (2021), and would offer natural

alternatives as an input to our empirical method.23

4.2 Counterfactual policy rule exercises

We apply our empirical method to predict the effects of investment-specific technology shocks

under various counterfactual monetary policy rules. In particular, our objects of interest are

the counterfactual behavior of the output gap, inflation, and the short-term nominal rate.

We choose to focus on investment-specific technology shocks since such shocks are widely

argued to be one of the main drivers of aggregate business-cycle fluctuations, at least in the

U.S. (e.g., see Justiniano et al., 2010; Ramey, 2016).

We proceed as follows: we estimate the inputs required by our methodology, apply the

method and present the main results, and then discuss how to interpret those results in light

of our theoretical identification results in Section 2. Appendix C provides the details of the

empirical implementation.

Inputs. The first input to our analysis are the aggregate effects of the non-policy shock of

interest εεε under the prevailing baseline policy rule. To recover those effects we rely on the

investment-specific technology news shock series identified by Ben Zeev & Khan (2015)—

23Finally, we note that this discussion also extends to fiscal shocks. For government spending, Ramey
(2011) explicitly distinguishes between shocks reflecting gradual military build-ups and more transitory
upticks in purchases. For taxes, Mertens & Ravn (2014) separate unanticipated (transitory) and anticipated
(gradual) tax shocks. We leave applications of our methodology to fiscal policy counterfactuals using those
shocks to future work.
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a shock that induces an anticipated change in the relative price of investment goods. We

estimate the propagation of this shock by ordering it first in a recursive Vector Autoregression

(VAR) (as recommended in Plagborg-Møller & Wolf, 2021b).

The second input are the causal effects of a menu of different monetary policy shocks. For

this we consider the shock series of Romer & Romer (2004) and Gertler & Karadi (2015), as

already discussed in Section 4.1. To correctly account for joint uncertainty in the estimation

of the two shocks, we study their propagation through a single VAR. For robustness, we

also repeat all of our policy counterfactual applications with the shock series of Miranda-

Agrippino & Ricco and Aruoba & Drechsel—two less well-known but arguably somewhat

more robust shock series—and find similar results. All results for these alternative shock

measures are reported in Appendix C.4.

Counterfactual policy results. We use our methodology to construct counterfactu-

als for several different alternative monetary policy rules: output gap targeting; a standard

Taylor (1999) rule; a nominal rate peg; nominal GDP targeting; and the optimal policy rule

corresponding to a loss function with equal weight on the output gap and a weighted average

of current and lagged inflation (i.e., average inflation targeting).

First, Figure 3 shows our counterfactual results for output gap stabilization. The iden-

tified investment technology shock has both a cost-push as well as a negative demand com-

ponent, consistent with theory (e.g., Justiniano et al., 2010). Under the baseline policy rule

(dotted grey), interest rates are cut relatively aggressively, though by not enough to stabilize

the output gap; furthermore inflation stays moderately above target. Under our approxi-

mation to output gap targeting, interest rates are cut much more aggressively, essentially

stabilizing the output gap from around a couple of quarters after the shock, at the cost of

persistently higher inflation. Given the well-documented lags in monetary policy transmis-

sion, it seems unlikely that any interest rate path could actually stabilize the output gap in

the immediate aftermath of the shock; we thus believe that our empirical analysis yields an

accurate approximation to what output gap targeting can achieve in practice.24

Second, Figure 4 shows the results for a Taylor-type rule with strong responses to inflation

and the output gap as well as moderate nominal interest rate smoothing. Due to the observed

increase in inflation, this policy rule actually dictates a much less aggressive rate cut, resulting

in somewhat lower output and inflation at medium horizons. In the right panel, the distance

24In the notation of Section 2, this would mean that perfect output gap targeting—i.e., the rule yyy = 0,
with y denoting the output gap—is not implementable (i.e., Assumption 2 is violated).
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Policy Counterfactual, Output Gap Targeting

Figure 3: Output gap, inflation and interest rate impulse responses to a contractionary investment-
specific technology shock under the prevailing baseline rule (dotted grey) and the best feasible
approximation to output gap targeting (orange), computed following (31). The shaded areas cor-
respond to 16th and 84th percentile confidence bands. Perfect output gap targeting is displayed as
the black dashed line.

between the black dashed and orange lines indicates whether or not our method is able to

accurately implement the counterfactual rule. While the orange lines show our counterfactual

path of interest rates, the black lines instead use the Taylor rule to map the output gap and

inflation paths shown in the left and middle panels into paths of nominal interest rates. The

distance between the two is thus simply the argument of (31)—i.e., the implementation error.

We see that the counterfactual Taylor rule is imposed relatively well throughout, except at

a couple of quarters after the initial shock (where interest rates are still cut by too much

relative to the Taylor rule prescription).

Third, we proceed in the spirit of the recent change in the Federal Reserve’s strategy

and consider a policymaker with preferences over output and average inflation π̄t, where

π̄t =
∑K

ℓ=0 ωℓπt−ℓ.
25 We then represent the loss function of a dual mandate policymaker

with preferences over average inflation as

L = λππ̄ππ
′Wπ̄ππ + λyyyy

′Wyyy

25Here K denotes the maximal (lagged) horizon that enters the inflation averaging, and ωℓ denotes the
weight on the ℓth lag, with

∑
ℓ ωℓ = 1 and ωℓ ≥ 0 ∀ℓ. For our application we setK = 20 and ωℓ ∝ exp(−0.1ℓ).

Suitably stacking the weights {ωℓ}, we can define a linear map Π̄ such that π̄̄π̄π = Π̄× πππ.
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Policy Counterfactual, Taylor Rule

Figure 4: Output gap, inflation and interest rate impulse responses to a contractionary investment-
specific technology shock under the prevailing baseline rule (dotted grey) and the best feasible
approximation to a simple Taylor-type rule ît = 0.5̂it−1 + 0.5 × (1.5π̂t + ŷt) (orange), computed
following (31). The shaded areas correspond to 16th and 84th percentile confidence bands. The
distance between black dashed and orange lines in the right panel is the implementation error (i.e.,
the argument of (31)).

with λπ = λy = 1, W = diag(1, β, β2, · · · ) and β = 1/1.01. Results for our optimal policy

counterfactual are displayed in Figure 5. The key takeaway here is that this optimal policy

counterfactual differs very little from actually observed outcomes. In other words, there is

little room to improve upon the observed allocation by changing policy within the space of

policy instrument paths spanned by our two identified policy shocks.

Appendices C.3 and C.4 present several further applications. First, we consider the two

remaining policy counterfactuals: nominal GDP targeting and a nominal interest rate peg.

We find that nominal GDP targeting can be implemented very accurately; interestingly, this

counterfactual looks quite similar to our estimated outcomes under the baseline rule, with

interest rates cut only slightly less aggressively. Matters look different for a nominal interest

rate peg, however. Here, nominal interest rates in our best Lucas critique-robust counterfac-

tual still fall by quite a bit too much, in particular at short horizons. Our empirical method

thus in this case does not allow an accurate characterization of the desired counterfactual.

Second, we for all five counterfactual rules present results for the multi-shock Sims & Zha

refinement discussed in Section 3.2. For four of our five counterfactuals, allowing for ex post

shocks to further improve the rule fit does not materially alter our conclusions. The reason

is simple: the contemplated counterfactual policy rules are already implemented well using
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Policy Counterfactual, Optimal AIT Policy Rule

Figure 5: Output gap, inflation and interest rate impulse responses to a contractionary investment-
specific technology shock under the prevailing baseline rule (dotted grey) and the best feasible
approximation to an optimal average inflation targeting monetary policy rule (purple), computed
as discussed in Appendix B.2. The shaded areas correspond to 16th and 84th percentile confidence
bands.

date-0 shocks only, so there is little need to additionally rely on ex post shocks. For the nom-

inal interest rate peg, on the other hand, the date-0 shocks are not sufficient, yet moderately

sized ex post surprises allow for an almost perfect stabilization of interest rates. Output in

this counterfactual contracts by more, and inflation is materially lower at medium horizons.

Third, we repeat our analysis with the alternative shock series of Miranda-Agrippino & Ricco

and Aruoba & Drechsel. Those two shocks give similar impulse responses to our baseline

shock measures, and so our systematic policy rule counterfactuals are not affected much.

Discussion. The results from our applications reveal that existing empirical evidence on

policy shocks is already sufficient to tightly restrict policy rule counterfactuals for several

prominent alternative monetary policy strategies. At the same time, we emphasize that our

empirical method is clearly not always applicable: for some non-policy shocks and some

counterfactual rules, it will not be possible to enforce the counterfactual rule accurately.

In particular, the counterfactuals that we constructed for the investment shock application

were relatively accurate precisely because the investment shock is rather transitory, thus only

requiring knowledge of the effects of similarly transitory interest rate changes, along the lines

of those implied by the Romer & Romer and Gertler & Karadi shocks (see Appendix C.2

for the exact paths). More persistent non-policy shocks εεε necessarily induce more persistent
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policy instrument movements and thus would correspondingly require empirical evidence on

highly persistent policy shocks (e.g., far-ahead forward guidance).

5 Conclusions

The standard approach to counterfactual analysis for changes in systematic policy rules relies

on fully-specified structural general equilibrium models. Our identification results instead

point in a different direction: researchers can estimate the causal effects of distinct policy

shocks and combine them to form policy counterfactuals. Importantly, these counterfactuals

are valid in a large class of models that encompasses the majority of structural business-cycle

models that are currently used for policy analysis.

An important challenge in implementing this strategy is that its informational require-

ments are high. We showed how to proceed in the empirically relevant case of evidence on a

small number of policy shocks. We illustrated through several examples that empirical evi-

dence is already sufficient to tightly characterize a variety of interesting monetary policy rule

change counterfactuals, reducing the need for explicit structural modeling. More generally,

a key message of this paper is to emphasize the value of empirical strategies that recover

the dynamic causal effects associated with different time paths of policy instruments. Every

additional piece of empirical evidence on a different policy instrument path will expand the

space of counterfactual policy rules that can be analyzed with our method.
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Online Appendix for:

What Can Time-Series Regressions

Tell Us About Policy Counterfactuals?

This online appendix contains supplemental material for the article “What Can Time-Series

Regressions Tell Us About Policy Counterfactuals?”. We provide (i) supplementary results

complementing our theoretical identification analysis in Section 2, (ii) implementation details

for our empirical methodology in Section 3, and (iii) several supplementary findings and

alternative experiments complementing our applications in Section 4.

Any references to equations, figures, tables, assumptions, propositions, lemmas,

or sections that are not preceded “A.”—“C.” refer to the main article.
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A Supplementary theoretical results

This appendix provides several results complementing our theoretical identification analysis

of Section 2. Appendix A.1 discusses examples of structural models that are nested by our

results, Appendix A.2 gives an example of a model that is not, Appendix A.3 extends our

optimal policy arguments to more general loss functions, Appendix A.4 provides the details

for unconditional second-moment counterfactuals, Appendix A.5 studies optimal policy in

our illustrative HANK model, Appendix A.6 shows how we construct counterfactuals with a

limited number of policy shocks (as displayed in Figure 1), and finally Appendix A.7 provides

a global identification analysis with even higher informational requirements.

A.1 Examples of nested models

We provide further details on three sets of models: the three-equation New Keynesian model

of Section 2.1, a general class of behavioral models, and the HANK model of Section 2.4.

Three-equation NK model. We here state the three-equation model of Section 2.1 in

the form of our general matrix system (6) - (7). We begin with the non-policy block. The

Phillips curve can be written as
1 −β 0 . . .

0 1 −β . . .

0 0 1 . . .
...

...
...

. . .

πππ − κyyy − εεεs = 0,

while the Euler equation can be written as

−σ


0 1 0 . . .

0 0 1 . . .

0 0 0 . . .
...

...
...

. . .

πππ +


1 −1 0 . . .

0 1 −1 . . .

0 0 1 . . .
...

...
...

. . .

yyy + σiii = 0.

Letting xxx ≡ (πππ′, yyy′)′, we can stack these linear maps into the form (6). Finally the policy

rule can be written as

ϕππππ − iii+ ννν = 0,
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which directly fits into the form of (7) with zzz = iii.

Behavioral model. Our general framework (6) - (7) is rich enough to nest popular

behavioral models such as the cognitive discounting framework of Gabaix (2020) or the

sticky information set-up of Mankiw & Reis (2002). We here provide a sketch of the argument

for a particular example—the consumption-savings decision of behavioral consumers. Our

discussion leverages sequence-space arguments as in Auclert et al. (2021).

Let the linear map E summarize the informational structure of the consumption-savings

problem, with entry (t, s) giving the expectations of consumers at time t about shocks at

time s. Here an entry of 1 corresponds to full information and rational expectations, while

entries between 0 and 1 can capture behavioral discounting or incomplete information. For

example, cognitive discounting at rate θ would correspond to

E =


1 θ θ2 . . .

1 1 θ . . .

1 1 1 . . .
...

...
...

. . .


while sticky information with a fraction 1 − θ receiving the latest information could be

summarized as

E =


1 1− θ 1− θ . . .

1 1 1− θ2 . . .

1 1 1 . . .
...

...
...

. . .

 .

Let p denote an input to the household consumption-savings problem (e.g., income or interest

rates). In sequence space, we can use the matrix E to map derivatives of the aggregate

consumption function with respect to p, denoted Cp, into their behavioral analogues C̃p via

C̃p(t, s) =
min(t,s)∑
q=1

[E(q, s)− E(q − 1, s)]Cp(t− q + 1, s− q + 1).

Typical behavioral frictions thus merely affect the matrices that enter our general non-policy

block (6), but do not affect the separation of policy- and non-policy blocks at the heart of

our identification result.
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Quantitative HANK model. The HANK model used for our quantitative illustration

in Section 2.4 is exactly the same as in Wolf (2021) (including the parameterization, except

of course for the monetary policy rule). The non-policy shock εεε is an AR(1) innovation to

the model’s Phillips curve with persistence 0.8.

A.2 Filtering problems

To illustrate how an asymmetry in information between the private sector and the policy

authority can break our separation of the policy and non-policy blocks in (6) - (7) even for a

linear model, we consider a standard Lucas (1972) island model with a slightly generalized

policy rule. The policy authority sets nominal demand xt according to the rule

xt = ϕyyt + xt−1 + εmt

where yt denotes real aggregate output and εmt is a policy shock with volatility σm. The

private sector of the economy as usual yields an aggregate supply curve of the form

yt = θ(pt − Et−1pt)

where the response coefficient θ follows from a filtering problem and is given as

θ =
σ2
z

σ2
z + σ2

p

with σz denoting the (exogenous) volatility of idiosyncratic demand shocks and σp denoting

the (endogenous) volatility of the surprise component of prices, pt−Et−1pt. A straightforward

guess-and-verify solution of the model gives

pt =
1

1 + θ
xt +

θ

1 + θ
xt−1

and so

σ2
p =

(
1

1 + θ

)2

Var(ϕyyt + εmt ).

But since

yt =
1

1− θ
1+θ

ϕy

θ

1 + θ
εmt

it follows that θ depends on the policy rule coefficient ϕy, breaking our separation assumption.
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A.3 More general loss functions

Proposition 2 can be generalized to allow for a non-separable quadratic loss function. Suppose

the policymaker’s loss function takes the form

L = xxx′Qxxx (A.1)

where Q is a weighting matrix. Following the same steps as the proof of Proposition 2, we

can formulate the policy problem as minimizing the loss function (A.1) subject to (25). The

first-order conditions of this problem are

Θ′
ν,x,A(Q+Q′)xxx = 0

so we can recover the optimal policy rule as

A∗
x = Θ′

ν,x,A(Q+Q′)

A∗
z = 000

Even outside of the quadratic case, the causal effects of policy shocks on xxx are still

enough to formulate a set of necessary conditions for optimal policy, but in this general case

the resulting optimal policy rule will not fit into the linear form (7).

A.4 Counterfactual second-moment properties

Our analysis is largely focussed on constructing counterfactuals conditional on particular

non-policy shock paths εεε. This is in keeping with much of the empirical policy counter-

factual literature that followed the lead of Sims & Zha (1995) (e.g., Bernanke et al., 1997;

Eberly et al., 2020; Antolin-Diaz et al., 2021). However, under some additional assump-

tions, our results can also be used to construct unconditional counterfactual second-moment

properties—that is, predict how variances and covariances of macroeconomic aggregates

would change under a counterfactual rule. This section provides the detailed argument.

Setting. We consider a researcher that observes and is interested in the counterfactual

properties of some vector of macroeconomic aggregates y = (x, z)—the endogenous outcomes

and policy instruments of our main analysis. We assume that, under the prevailing baseline

policy rule, this vector of macroeconomic aggregates follows a standard structural vector
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moving average representation:

yt =
∞∑
ℓ=0

Θℓεt−ℓ = Θ(L)εt (A.2)

where εt ∼ N(0, I).26 We would like to predict the second-moment properties of yt under

some counterfactual policy rule (8).

If the researcher can estimate the causal effects of all shocks εt on the outcomes yt, then

the identification argument is trivial: she simply applies Proposition 1 for each individual

shock, stacks the resulting impulse responses into a new vector moving average representation

Θ̃(L), and from here computes the counterfactual second-moment properties. This approach

may however not be feasible, as it requires the researcher to be able to correctly disentangle

all of the structural shocks driving the macro-economy.

Procedure. Our proposed procedure has three steps. First, the researcher estimates the

Wold representation of the observables yt. Second, using Proposition 1, she maps the impulse

responses to the Wold errors into new impulse responses corresponding to the counterfac-

tual policy rule. Third, she stacks those new impulse responses to arrive at a new vector

moving average representation, and from this representation constructs a new set of second-

moment properties. Our identification result states that, if the vector moving representation

(A.2) under the baseline rule is invertible, then this procedure correctly recovers the desired

counterfactual second moments.

Identification result. Let Θ̃ℓ denote the lag-ℓ impulse responses of the observables

yt to the shocks εt under the counterfactual policy rule. The process for yt under the

counterfactual policy rule thus becomes

yt =
∞∑
ℓ=0

Θ̃ℓεt−ℓ = Θ̃(L)εt

and so the second moments of the true counterfactual process are given by

Γy(ℓ) =
∞∑

m=0

Θ̃mΘ̃
′
m+ℓ. (A.3)

26Given our focus on second moments, the normality restriction is purely for notational convenience (see
e.g., Plagborg-Møller & Wolf, 2021b).
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Now consider instead the output of our proposed procedure. Let ut denote the Wold

errors under the observed policy rule, and let ε∗t denote any unit-variance orthogonalization

of these Wold errors (e.g., ε∗t = chol(Var(ut))
−1 × ut). Then yt under the observed policy

rule satisfies

yt = Ψ(L)ε∗t =
∞∑
ℓ=0

Ψℓε
∗
t−ℓ

where ε∗t ∼ N(0, I). Under invertibility—i.e., Θ(L) has a one-sided inverse—we in fact know

that ε∗t = Pεt, Ψ(L) = Θ(L)P ′, PP ′ = P ′P = I. The second step of our procedure gives the

counterfactual vector moving average representation

yt = Ψ̃(L)ε∗t

where Ψ̃(L) gives the dynamic causal effects of ε∗t = Pεt on yt under the counterfactual rule.

But since the causal effects of εt under the baseline rule are given as Θ̃(L), it follows that

we must also have

Ψ̃(L) = Θ̃(L)P ′.

But then the implied second-moment properties of yt are given as

Γy(ℓ) =
∞∑

m=0

Ψ̃mΨ̃
′
m+ℓ =

∞∑
m=0

Θ̃mP
′P Θ̃′

m+ℓ =
∞∑

m=0

Θ̃mΘ̃
′
m+ℓ (A.4)

which is exactly equal to (A.3), completing the argument.

Finally, we emphasize that this identification result inherently rests on the assumption

of invertibility. Under invertibility, there is a static one-to-one mapping between true shocks

εt and Wold errors ε∗t ; thus, if we can predict the propagation of the Wold errors under

the counterfactual rule, then we also match the propagation of the true shocks, and so we

correctly recover second-moment properties. Under non-invertibility, however, there is no

analogous one-to-one mapping, and so it is not guaranteed that second moments will be

matched by our procedure.

A.5 Optimal policy counterfactual in HANK

Section 2.4 used a quantitative HANK model to illustrate the logic of Proposition 1—the

general counterfactual rule identification result. We here do the same for the analogous

optimal policy identification result in Proposition 2.
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Optimal Policy, HANK Model

Figure A.1: The grey and orange lines in the left and middle panels show output and inflation
responses to the cost-push shock εt for the HANK model with policy rule (28) and the optimal
rule for the loss function (A.5). The dark blue lines give output and inflation counterfactuals
constructed through the policy shocks on the right, set in line with Proposition 2. Lighter shades
of blue indicate farther-out policy news shocks.

We consider a policymaker with a standard dual mandate loss function

L = λππππ
′πππ + λyyyy

′yyy (A.5)

with λπ = λy = 1. As in Section 2.4 we start by solving for the optimal policy using

conventional methods: we derive the policy rule corresponding to the first-order conditions

(18) - (20), solve the model given that policy rule, and report the result as the orange lines in

the left and middle panels of Figure A.1. We see that, at the optimum, the cost-push shock

moves inflation by much more than output, consistent with the assumed policy weights and

the relatively flat Phillips curve. Compared to this optimal policy, the simple baseline rule

of the form (28) tightens too much.

We then instead use Proposition 2 to equivalently recover the optimal policy rule and

the corresponding impulse responses. We begin with the optimal rule itself. By (26), the

optimal rule is given as

λπΘ
′
π,ν,Aπππ + λyΘ

′
y,ν,Ayyy = 000.

A researcher with knowledge of the effects of monetary policy shocks on inflation and output,

{Θπ,ν,A,Θy,ν,A}, is able to construct this optimal policy rule. We can then create a counter-

factual response to the cost-push shock using (11)-(13), again requiring only knowledge of
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the causal effects of policy shocks as well as the impulse responses to the cost-push shock

under the baseline rule. As expected, the resulting impulse responses—the dark blue lines—

are identical to those obtained by explicitly solving the optimal policy problem. Finally, the

right panel of Figure A.1 shows the optimal policy as a deviation ν̃νν from the prevailing rule.

The optimal rule accommodates the inflationary cost-push shock more than the baseline rule

(28), so the required policy “shock” is persistently negative (i.e., expansionary). Consistent

with our discussion in Figure 1, we choose to display those shocks ν̃νν in a way that emphasizes

that the optimum is achieved through a sequence of date-0 policy shocks.

A.6 Counterfactuals with a limited number of shocks

In Figure 1 we constructed counterfactuals using a limited number ns of policy shocks. We

here provide the computational details for this construction. We discuss the general case of a

researcher with access to ns shocks (which converges to our identification result for ns → ∞),

with the original proposal of Sims & Zha (1995) nested as the ns = 1 special case.

The approach of Sims & Zha leverages the idea that evidence on one policy shock—i.e.,

any single fixed path ννν—is sufficient to enforce any given counterfactual ex post. With ns

distinct shocks, the counterfactual rule can be implemented ex post as well as in ex ante ex-

pectation for the next ns−1 time periods. To compute the counterfactuals corresponding to

this multi-shock case we proceed as follows. First, at t = 0, we solve for the ns-dimensional

vector of policy shocks ννν01:ns
≡ (ν00 , . . . , ν

0
ns−1)

′ such that, in response to εεε and ννν01:ns
the

counterfactual rule holds at t = 0 and is expected to hold for t = 1, . . . , ns − 1. Output

and inflation at t = 0 are simply given as the thus-derived impulse responses to εεε and ννν01:ns
.

Second, at t = 1, we solve for the ns-dimensional vector of shocks ννν11:ns
≡ (ν10 , . . . , ν

1
ns−1)

′

such that, in response to the time-0 shocks {εεε,ννν01:ns
} and the time-1 shocks ννν11:ns

, the coun-

terfactual policy rule holds at t = 1 and in expectation for t = 2, . . . , ns. These impulse

responses then give us output and inflation at t = 1. Continuing iteratively, we obtain the

entire output and inflation impulse responses, as plotted in the left and middle panels of

Figure 1. The corresponding shock paths are shown in the right panel.

A.7 Global identification argument

We here extend our identification results to a general non-linear model with aggregate risk.
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Setting. We consider an economy that runs for T periods overall. As in our main analysis,

the economy consists of a private block and a policy block. Differently from our main analysis,

there is no exogenous non-policy shock sequence εεε; rather, there is a stochastic event ωt each

period, with stochastic events drawn from a finite (nω-dimensional) set. Let xt(ω
t) be the

value of the endogenous variables after history ωt ≡ {ω0, ω1, · · · , ωt} and let zt(ω
t) be the

realization of the policy instruments after history ωt. Let xxx and zzz be the full contingent

plans for for all t ∈ {0, 1, · · · , T} and all histories. xxx and zzz are vectors in Rnx×N and Rnz×N

respectively, where N = nω + n2
ω + · · ·+ nT+1

ω .

We can write the private-sector block of the model as the non-linear equation

H(xxx,zzz) = 000. (A.6)

Similarly, we can write the policy block corresponding to a baseline policy rule as

A(xxx,zzz) + ννν = 000 (A.7)

where the vector of policy shocks ννν is now nz × N dimensional. We assume that, for any

ννν ∈ Rnz×N , the system (A.6) - (A.7) has a unique solution. We write this solution as

xxx = x(ννν), zzz = z(ννν).

We want to construct counterfactuals under the alternative policy rule

Ã(xxx,zzz) = 000 (A.8)

replacing (A.7). We again assume that the system (A.6) and (A.8) has a unique solution,

now written as (x̃xx, z̃zz). If we are interested in the counterfactual following a particular path

of exogenous events, then we are interested in selections from these vectors.

Proposition A.1. For any alternative policy rule Ã we can construct the desired counter-

factuals as

x(ν̃νν) = x̃xx, z(ν̃νν) = z̃zz (A.9)

where ν̃νν solves

Ã(x(ν̃νν), z(ν̃νν)) = 000. (A.10)

The solution ν̃νν to this system exists and any such solution generates the unique counterfactual

(x̃xx, z̃zz).
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Proof. We construct the solution ν̃νν as

ν̃νν ≡ Ã(x̃xx, z̃zz)−A(x̃xx, z̃zz).

By the definition of the functions of x(•) and z(•), we know that

H(x(ν̃νν), z(ν̃νν)) = 000 (A.11)

A(x(ν̃νν), z(ν̃νν)) + Ã(x̃xx, z̃zz)−A(x̃xx, z̃zz) = 000 (A.12)

Similarly, by the definition of the functions x̃(•) and z̃(•), we also know that

H(x̃(000), z̃(000)) = 000 (A.13)

Ã(x̃(000), z̃(000)) = 000 (A.14)

It follows that {x(ν̃νν) = x̃xx, z(ν̃νν) = z̃zz} is a solution of the system (A.11) - (A.12). By assump-

tion this system has a unique solution, so it must be that ν̃νν satisfies {x(ν̃νν) = x̃xx, z(ν̃νν) = z̃zz}.
We now show that any solution to (A.10) must generate (x̃xx, z̃zz). Proceeding by contra-

diction, consider any other ν̃νν that solves (A.10) and suppose that either x(ν̃νν) ̸= x̃xx and/or

z(ν̃νν) ̸= z̃zz. By definition of the functions x(•) and z(•) together with the property (A.10) we

know that

H(x(ν̃νν), z(ν̃νν)) = 000

Ã(x(ν̃νν), z(ν̃νν)) = 000

and so (x(ν̃νν), z(ν̃νν)) is a solution of (A.6) and (A.8) that is distinct from (x̃, z̃). But by

assumption only one such solution exists, so we have a contradiction.

Informational requirements. To construct the desired policy counterfactual for all

possible alternative policy rules, we in general need to be able to evaluate the functions x(•)
and z(•) for every possible ννν ∈ Rnz×N . That is, we need to know the effects of policy shocks

of all possible sizes at all possible dates and all possible histories.

To understand how our baseline analysis relaxes these informational requirements, it is

useful to proceed in two steps: first removing uncertainty (but keeping non-linearity), and

then moving to a linear system.
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1. Non-linear perfect foresight. For a non-linear perfect foresight economy, we replace

our general (nx + nz)×N -dimensional system with an (nx + nz)× T -dimensional one:

H(xxx,zzz,εεε) = 000

A(xxx,zzz) + ννν = 000

Because of the lack of uncertainty, other possible realizations of the exogenous events do

not matter—only the particular time path, now denoted εεε, is relevant. Proceeding exactly

in line with the analysis above, we can conclude that now we need the causal effects of

all possible policy shocks ννν ∈ Rnz×T at the equilibrium path induced by εεε. Thus, since we

only care about the actual realized history of the exogenous inputs, the dimensionality of

the informational requirements has been reduced substantially.

2. Linear perfect foresight/first-order perturbation. Linearity further reduces our

informational requirements in two respects. First, because of linearity, to know the effects

of every possible ννν ∈ Rnz×T , it suffices to know the effects of nz × T distinct paths ννν that

together span Rnz×T . Second, estimates given any possible exogenous state path of the

economy suffice, simply because the effects of policy and non-policy shocks are additively

separable. We have thus reduced the problem to the (still formidable) one of finding the

effects of nz × T distinct policy shock paths.
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B Details for empirical method

This appendix provides further details for our empirical methodology. Appendix B.1 begins

with the Sims & Zha refinement, and Appendix B.2 presents econometric implementation

details for both our main method and the refinement.

B.1 Multi-shock refinement of Sims & Zha

An intuitive description of our refinement of the method of Sims & Zha (1995) was provided

in Section 3.2. We here present the mathematical details.

Our proposed extension of the Sims & Zha method trades off rule accuracy versus ex post

surprises in the form of a simple ridge regression, generalizing our baseline method (31). To

formally state this approach we require some additional notation. We let {Ω(h)
x,A,Ω

(h)
z,A} denote

impulse responses to policy shocks that materialize at horizon h; that is, for h = 0 those

impulse responses are simply given as {Ωx,A,Ωz,A}, while for h > 0 impulse responses at the

first h−1 horizons are exactly zero, and impulse responses from horizon h onwards are equal

to {Ωx,A,Ωz,A}. Now let sssh ∈ Rns denote the weights assigned to the ns shocks at horizon

h. Our refinement of Sims & Zha then solves the following ridge regression problem:

min
{sssh}Hh=0

||Ãx(xxxA(εεε) +
H∑

h=0

Ω
(h)
x,A × sssh) + Ãz(zzzA(εεε) +

H∑
h=0

Ω
(h)
z,A × sssh)||+ ψ

H∑
h=1

||sssh||, (B.1)

where the tuning parameter ψ penalizes ex post policy surprises, and H ≫ 0 is the maximal

shock horizon. For ψ = ∞ this method simply reduces to our baseline method, with only the

date-0 shocks sss0 allowed to be different from zero. For ψ = 0 (and largeH) the counterfactual

rule is instead imposed perfectly ex post as in the original proposal of Sims & Zha, with

ns = 1 corresponding exactly to their procedure. For intermediate ψ, the researcher is willing

to trade off ex post surprises sssh for h ≥ 1 in return for higher accuracy in implementing

the desired counterfactual policy rule.27 If those ex post surprises are small enough, then

researchers may be willing to accept the expectational errors they entail in return for more

accurately imposing the counterfactual rule ex post.

27Rather than smoothly penalizing ex post surprises as in (B.1), researchers may instead consider using
ns shocks to enforce a given counterfactual rule ex post and in expectation for the next ns−1 periods, as we
did in Figure 1. Unfortunately we have found this method often yields explosive dynamics in actual data—a
problem that actually also arises with the original approach of Sims & Zha (1995).
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B.2 Econometric implementation

We here discuss the practical implementation of our baseline Lucas critique-robust empirical

method as well as the refinement of the Sims & Zha method. Since our robust procedure

is a general case of the general ridge regression problem (B.1) for ψ = ∞, we here simply

present implementation details for the ridge regression version.

To express the solution to our basic ridge regression problem (B.1), we stack the policy

shocks in the vector sssH and the corresponding causal effects in the matrix ΩH
x,A. We fur-

thermore let P denote a matrix that is equal to an (ns ·H)× (ns ·H)-dimensional identity

matrix except for the first ns diagonal entries, which are equal to zero. The ridge regression

solution is then given as

sssH = −
[(

ÃxΩ
H
x,A + ÃzΩ

H
z,A

)′ (
ÃxΩ

H
x,A + ÃzΩ

H
z,A

)
+ ψP ′P

]−1

×
[(

ÃxΩ
H
x,A + ÃzΩ

H
z,A

)′ (
ÃxxxxA(εεε) + ÃzzzzA(εεε)

)]
.

For our optimal policy counterfactual, we analogously consider the following regularized

optimal policy problem:

min
sssH

nx∑
i=1

λixxx
′
iWxxxi + ψ||PsssH || (B.2)

such that

xxx = xxx(εεε) + ΩH
x,Asss

H

This gives the optimality conditions:

(W ⊗ Λ)xxx+φφφx = 000

−ψPsssH + (ΩH
x,A)

′φφφx = 000,

where Λ = diag(λ1, λ2, . . . ). Solving this system (together with the constraint of the problem)

gives our optimal policy counterfactual. In particular, for ψ = ∞, we find the optimal

counterfactual within the space of identified time-0 policy shock causal effects, without any

ex post surprises.
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C Supplementary details for monetary applications

This appendix provides further results supplementing the discussion in Section 4 on system-

atic monetary policy rule counterfactuals. Appendices C.1 and C.2 begin by describing the

data and our baseline policy shock dynamic causal effect estimates. Results for the coun-

terfactuals omitted in the main text are presented in Appendix C.3, and we investigate the

robustness of our results to the use of other shock measures in Appendix C.4.

C.1 Data

Our analysis of investment-specific technology shocks follows Ben Zeev & Khan (2015), while

our monetary policy shock identification closely mimics that of (i) Romer & Romer (2004)

and (ii) Gertler & Karadi (2015).

Outcomes. We are interested in impulse responses of three outcome variables: the output

gap, inflation, and the policy rate. For the output gap, we use the series ygap hp of Barnichon

& Mesters (2020).28 For inflation, we compute annual changes in the GDP deflator (using the

series pgdp from the replication files of Ramey (2016)). Finally, we consider the federal funds

rate as our measure of the policy rate, obtained from the St. Louis Federal Reserve FRED

database. In keeping with much prior work, we also additionally control for commodity

prices, with our measure obtained from the replication files of Ramey (2016) (lpcom). All

series are quarterly.

Shocks & identification. We take the investment-specific technology shock series from

Ben Zeev & Khan (2015) (bzk ist news in the replication files of Ramey (2016)), the Romer

& Romer (2004) shock series from the replication and extension of Wieland & Yang (2020)

(rr 3), and the high-frequency monetary policy surprise series from Gertler & Karadi (2015)

(mp1 tc in the replication files of Ramey (2016)).29 When applicable, the shock series are

aggregated to quarterly frequency through simple averaging.

In Appendix C.4 we examine the robustness of our conclusions to other policy shock

series—those of Aruoba & Drechsel (2022) and Miranda-Agrippino & Ricco (2021). For the

former, we obtain the shock series directly from their replication files (shock). For the latter,

28All results are essentially unchanged if we use a measure of log real GDP instead (rgdp scaled by pop,
taken from the replication files of Ramey (2016)).

29Results are very similar if we use the alternative surprise series ff4 tc instead.
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we use the publicly available replication files to construct the SVAR-IV shock series for the

full sample (from 1979:M1 onwards), with the shocks constructed at the posterior mode of

the estimated reduced-form VAR (the specification for their Figure 3).

C.2 Shock & policy dynamic causal effects

For maximal consistency, we try to estimate all impulse responses within a common empirical

specification. For the investment-specific technology shocks, we order the shock measure first

in a recursive VAR containing our outcomes of interest (following Plagborg-Møller & Wolf,

2021b), estimated on a sample from 1969:Q1–2007:Q4. For our two monetary policy shocks,

we estimate a single VAR in the two shock series, our three outcomes of interest, as well as

commodity prices, also estimated from 1969:Q1–2007:Q4.30 For identification, we order the

Gertler & Karadi shock first (again consistent with the results in Plagborg-Møller & Wolf

(2021b)) and the Romer & Romer shock second-to-last, before the federal funds rate (the

additional “exogeneity insurance” as in Romer & Romer, 2004).

We use three lags in the technology shock specification, and four lags in the joint monetary

policy VAR. We furthermore estimate all VARs with a constant as well as deterministic linear

and quadratic trends. For the baseline investment-specific technology shock we fix the OLS

point estimates. We then construct policy counterfactuals using our identified monetary

policy shocks, taking into account their estimation uncertainty. Since the transmission of

both shocks is estimated within a single VAR, we can draw from the posterior and compute

the counterfactuals for each draw, thus taking into account joint estimation uncertainty.

Results. The OLS point estimates for the technology shocks of Ben Zeev & Khan (2015)

are reported as the grey lines in Figure 3. For monetary policy, the estimated causal effects

for our two outcomes of interest as well as the policy instrument are displayed in Figure C.1.

The results are in line with prior work: both policy shocks induce the expected signs of the

output gap and inflation responses, though the response shapes are quite distinct, consistent

with the differences in the induced interest rate paths. We also note that the magnitudes of

the estimated responses are at the lower end of empirical estimates (c.f. Table 2 and Figures

1-2 in Ramey, 2016).

30The Gertler & Karadi shock series is only available from 1988 onwards. We thus follow prior work in
the macro IV literature (e.g., Känzig, 2021) and set the missing values to zero.
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Romer & Romer (2004) Shock

Gertler & Karadi (2015) Shock

Figure C.1: Impulse responses after the Romer & Romer shock (top panel) and the Gertler &
Karadi shock (bottom panel). The grey areas correspond to 16th and 84th percentile confidence
bands, constructed using 10,000 draws from the posterior distribution of the reduced-form VAR
parameters.

C.3 Results for omitted monetary policy counterfactuals

In Section 4 we presented detailed results for only three of our counterfactuals—output

gap targeting, the Taylor rule, and optimal average inflation targeting policy—and only for

our baseline method, not the Sims & Zha (1995) refinement. We here provide the remaining

results. Throughout this section, our measure of rule accuracy is the horizon-by-horizon error

in enforcing the desired counterfactual rule (i.e., the argument of (31) or (B.1)). For our

Sims & Zha refinement we set ψ = 1, corresponding to an equal penalty on rule inaccuracy

and ex post policy shock surprises.
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Policy Counterfactual via Sims & Zha refinement, Output Gap Targeting

Figure C.2: Top panel: Output gap, inflation and interest rate impulse responses to a contrac-
tionary investment-specific technology shock under the prevailing baseline rule (dotted grey) and
the best feasible approximation to output gap targeting with ex post surprises (orange), computed
following (B.1) for ψ = 1. Bottom panel: ex post nominal interest rate surprise at time t. The
shaded areas correspond to 16th and 84th percentile confidence bands.

Output gap targeting. We begin in Figure C.2 with the output gap targeting coun-

terfactual. Since we already discussed results from our baseline empirical method in the

main text, we here only show results for the Sims & Zha refinement. We can conclude that

allowing for some ex post shocks essentially does not change the picture: ex post shocks do

not help with output gap stabilization right at the beginning, but after a couple of quarters

the output gap is almost perfectly stabilized anyway using date-0 shocks.

Taylor rule. Results for the Taylor rule counterfactual computed using the Sims & Zha

refinement are reported in Figure C.3. The orange lines and black dashed lines in the top
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Policy Counterfactual via Sims & Zha refinement, Taylor Rule

Figure C.3: Top panel: Output gap, inflation and interest rate impulse responses to a contrac-
tionary investment-specific technology shock under the prevailing baseline rule (dotted grey) and
the best feasible approximation to a Taylor-type rule ît = 0.5̂it−1 + 0.5× (1.5π̂t + ŷt) with ex post
surprises (orange), computed following (B.1) for ψ = 1. The distance between black dashed and
orange lines in the right panel is the implementation error (i.e., the first part of the argument of
(B.1)). Bottom panel: ex post nominal interest rate surprise at time t. The shaded areas corre-
spond to 16th and 84th percentile confidence bands.

right panel reveal that the counterfactual policy rule is now implemented almost perfectly

throughout; the bottom panel shows that this requires some moderate ex post instrument

surprises a couple of quarters after the initial shock. Compared to Figure 4, these ex post

surprises only have a moderate effect on the implied output gap and inflation dynamics

(which are consistently below the baseline outcome for both methods). The nominal interest

rate paths that generate these outcomes somewhat differ in their timing, with the Sims &

Zha refinement suggesting a more gradual response.
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Policy Counterfactual via Sims & Zha refinement, Optimal AIT Policy

Figure C.4: Top panel: Output gap, inflation and interest rate impulse responses to a contrac-
tionary investment-specific technology shock under the prevailing baseline rule (dotted grey) and
the best feasible approximation to an optimal average inflation targeting monetary policy rule with
ex post surprises (purple), computed by solving the problem (B.2) for ψ = 1. Bottom panel: ex
post nominal interest rate surprise at time t. The shaded areas correspond to 16th and 84th per-
centile confidence bands.

Optimal average inflation targeting policy. Figure C.4 revisits our optimal av-

erage inflation targeting policy counterfactual. As discussed in Section 4, for our baseline

method, the optimal policy counterfactual differs very little from actually observed outcomes.

The figure reveals that furthermore allowing for ex post surprises does not materially change

this headline conclusion.

Nominal interest rate peg. Results for the nominal interest rate peg are presented in

Figure C.5. The figure shows results both for our baseline method (orange) as well as the
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Policy Counterfactual, Interest Rate Peg

Figure C.5: Top panel: Output gap, inflation and interest rate impulse responses to a contrac-
tionary investment-specific technology shock under the prevailing baseline rule (dotted grey) and
the best feasible approximation to a nominal interest rate peg (orange and black), computed fol-
lowing (31) and (B.1) for ψ = 1. Bottom panel: implementation error for the counterfactual rule
and ex post nominal interest rate surprise at time t. The shaded areas correspond to 16th and 84th
percentile confidence bands.

Sims & Zha refinement (black). The implementation accuracy—the argument of (31)—is

presented in the bottom left panel. We see that, for our baseline method, the counterfactual

rule is implemented well from a couple of quarters out onwards, but rates are still cut by

quite a bit too much immediately after the shock. Alternatively, at the cost of repeated

(relatively small) interest rate surprises within the first year after the shock, the interest rate

is fixed almost perfectly. Since interest rates are now not cut (as much), the output gap and

inflation remain low for a longer period of time.
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Policy Counterfactual, Nominal GDP Targeting

Figure C.6: Top panel: Output gap, inflation and interest rate impulse responses to a contrac-
tionary investment-specific technology shock under the prevailing baseline rule (dotted grey) and
the best feasible approximation to a nominal GDP targeting (orange and black), computed follow-
ing (31) and (B.1) for ψ = 1. Bottom panel: implementation error for the counterfactual rule and
ex post nominal interest rate surprise at time t. The shaded areas correspond to 16th and 84th
percentile confidence bands.

Nominal GDP targeting. Results for nominal GDP targeting are presented in Fig-

ure C.6. The counterfactual policy is implicitly defined by the targeting rule

π̂t + (ŷt − ŷt−1) = 0, ∀t = 0, 1, . . .

We find that implementation errors are quite small throughout. Interestingly, the policy

instrument path is quite close to the estimated baseline (dotted grey), indicating that nominal

GDP is stabilized quite well already under the prevailing rule.
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C.4 Counterfactuals with alternative shock measures

Some recent work has questioned the validity of the canonical policy shocks of Romer &

Romer and Gertler & Karadi (e.g., see Ramey, 2016; Nakamura & Steinsson, 2018, and the

references therein). To examine the robustness of our conclusions to the use of alternative

measures of monetary policy shocks, we now use the policy shock series of Miranda-Agrippino

& Ricco (2021) and Aruoba & Drechsel (2022). These shock series are constructed using

methods similar to those of Gertler & Karadi and Romer & Romer, but use a richer set of

controls for the state of the economy as perceived by the Federal Reserve.

We study the propagation of these shocks in a single integrated VAR, exactly as in our

baseline analysis. We find that the two shocks differ in the implied interest rate movements,

with the shock of Miranda-Agrippino & Ricco (2021) mirroring the transitory rate movement

of Romer & Romer (2004), and the shock of Aruoba & Drechsel (2022) similar to the gradual

interest rate movement of Gertler & Karadi (2015). We then leverage these shock estimates

to construct monetary policy rule counterfactuals, proceeding exactly as in Section 4. Results

for our two main systematic policy rule counterfactuals—output gap targeting and the Taylor

rule—are displayed in Figure C.7. The main takeaway is that the systematic monetary policy

rule counterfactuals are very similar to our headline results. The underlying reason is simply

that the impulse responses to the Miranda-Agrippino & Ricco and Aruoba & Drechsel shocks

are quite similar to those displayed in Figure C.1 for Romer & Romer and Gertler & Karadi.

The perhaps most notable difference is that the shocks of Miranda-Agrippino & Ricco and

Aruoba & Drechsel have somewhat larger effects on output and inflation (for a given peak

interest rate response), so the interest rate cut for the output gap targeting counterfactual

is somewhat less steep, and the inflation spike is somewhat more pronounced.
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Policy Counterfactual, Output Gap Targeting, Alternative Shocks

Policy Counterfactual, Taylor Rule, Alternative Shocks

Figure C.7: Output gap, inflation and interest rate impulse responses to a contractionary
investment-specific technology shock under the prevailing baseline rule (dotted grey) and the best
feasible approximation to output gap targeting (orange, top panel) and a simple Taylor-type rule
ît = 0.5̂it−1+0.5× (1.5π̂t+ ŷt) (orange, bottom panel) computed following (31) and using the mon-
etary shocks of Miranda-Agrippino & Ricco (2021) and Aruoba & Drechsel (2022). The shaded
areas correspond to 16th and 84th percentile confidence bands.
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