Discussion of "Revisiting the Relationship Between Unemployment and Wages" by Galindo da Fonseca, Gallipoli and Yedid-Levi

Axel Gottfries

University of Cambridge

12th joint ECB/CEPR Labour Market Workshop Wage developments in the aftermath of the crisis

December 2016

Background and motivation

- Empirical evidence suggests that past unemployment rates matter for current wages
 - ► interpreted as evidence for history dependent wage setting (nominal wage rigidity etc)
- On-the-job search results in selection up the job ladder
 - job offer arrival rates are procyclical
- Match quality distribution depends on past labour market conditions
 - so the distribution of match quality is history dependent!
- Hagedorn and Manovskii (2013) thus argue that the observed history dependence in wages can be due to selection rather than history dependent wage setting
 - they find that once match quality is controlled for there is no evidence of history dependent wage setting

This paper

Galindo da Fonseca et al. (2016)

- Break down the measure from Hagedorn and Manovskii (2013) into
 - duration
 - average labour market tightness

Include the two measures separately

- 2 Estimate the regressions for different occupational types
 - find interesting differences between occupations

Paper methodology

Measure of selection

- Hagedorn and Manovskii (2013)
 - ▶ In q_{st} sum of labour market tightness
- Galindo da Fonseca et al. (2016)
 - ▶ In \bar{q}_{st} average market tightness
 - ▶ In $dur(q_{st})$ duration in calendar time
 - ▶ Hagedorn and Manovskii (2013) specification implies restriction $\beta_{\bar{q}} = \beta_{dur(q_{st})}$ as $\ln q_{st} = \ln \bar{q}_{st} + \ln dur(q_{st})$

Paper methodology

Measure of selection

- Hagedorn and Manovskii (2013)
 - ▶ In q_{st} sum of labour market tightness
- Galindo da Fonseca et al. (2016)
 - ▶ $\ln \bar{q}_{st}$ average market tightness
 - ▶ In $dur(q_{st})$ duration in calendar time
 - ▶ Hagedorn and Manovskii (2013) specification implies restriction $\beta_{\bar{q}} = \beta_{dur(q_{st})}$ as $\ln q_{st} = \ln \bar{q}_{st} + \ln dur(q_{st})$
- Important to measure the match quality correctly
 - what is the theoretical motivation for this decomposition?

Measuring match quality - (measure of selection)

Selection is proportional to job offer arrival rate (λ_t)

- ullet Cobb-Douglas matching function gives $\lambda_t = heta_t^lpha$
- ullet Expected number of offers $\int_{s}^{t} heta_{r}^{lpha} dr = heta_{st}$
- If θ remains fixed between s and t

Measuring match quality - (measure of selection)

Selection is proportional to job offer arrival rate (λ_t)

- ullet Cobb-Douglas matching function gives $\lambda_t = heta_t^lpha$
- ullet Expected number of offers $\int_{s}^{t} heta_{r}^{lpha}dr=m_{st}$
- If θ remains fixed between s and t

$$\ln m_{st} = \alpha \ln (\bar{q}_{st}) + \ln (dur(q_{st}))$$

- Both terms provide information about selection
- We expect that the coefficient on $dur(q_{st})$ to be larger
 - elasticity with respect to time is 1
 - lacktriangle elasticity with respect to labour market tightness is lpha

Measuring match quality - (measure of selection)

ullet If heta varies over the period

$$\ln m_{st} = \alpha \ln (\bar{q}_{st}) + \ln (dur(q_{st})) + \ln \left(\int_{s}^{t} \left(\frac{\theta_{r}^{\alpha}}{dur(q_{st})\bar{q}_{st}^{\alpha}} \right) dr \right)$$

- The blue term captures curvature in the matching function
 - ▶ if variations in labour market tightness are small then the term is small

Minor comment

- If this is the motivation why not include $\ln \left(\int_s^t \theta_r^{\alpha} dr \right)$ as a separate measure?
 - the job finding rate or matching function accounts for the concavity of the matching function and there is no blue term

Measuring match quality - (sufficient statistic)

Gottfries and Teulings (2016)

- We derive a sufficient statistic for selection $(m_{eh} + m_{hm})$ Distribution
- The expected number of offers is $m_{eh} + m_{hm} + 1$
 - 1 should be added for the initial offer
- The distribution determined the functional form
 - we find evidence that the distribution is Gumbel which corresponds to the logarithm

Minor comment

 Are the results for the different occupational types affected by using this measure

Performance pay

Variables	PPJ=1	PPJ=0
	(1)	(2)
U	-1.591***	-1.181
u^{min}	[0.586] -3.290** [1.297]	[0.799] -0.659 [1.202]

Performance pay

- Creates a link between labour market conditions and the wage
 - discretionary pay
 - indexation of pay (stock options, ect)
 - proxy for unobservables
- These mechanisms do not (necessarily) originate from the need to reward effort
 - what is the key friction or mechanism you have in mind?
- The results suggest that the first points can not be the full story

Interpreting the results by the type of occupation

Wage rigidity

- Point estimates of the effect of the minimum unemployment rate is
 - larger for manual than cognitive occupations
 - larger for routine than non-routine occupations

Interpreting the results by the type of occupation

Wage rigidity

- Point estimates of the effect of the minimum unemployment rate is
 - larger for manual than cognitive occupations
 - larger for routine than non-routine occupations
- What is the motivation for looking at different occupations?
 - differences in the type of wage setting? Performance pay?
 - differences in human capital accumulation?
 - a constraint that the nominal wages can not be lowered binds less often if the growth rate in human capital is higher
 - * seems to be consistent with the results in this paper
 - does comparing different occupations help us understand the frictions?

Performance pay

- Wages for occupations with performance pay are more sensitive to current conditions
 - Is there a nominal friction that performance pay can alleviate?
 - Is performance pay is linked to market conditions?
 - ★ Or is it discretionary?
 - Or are these just different types of jobs?

Interesting and thought-provoking paper!

- Galindo da Fonseca, J. A., G. Gallipoli, Y. Yedid-Levi, Et al. (2016): "Revisiting the Relationship Between Unemployment and Wages," Tech. rep.
- GOTTFRIES, A. AND C. N. TEULINGS (2016): "Returns to on-the-job search and the dispersion of wages," .
- HAGEDORN, M. AND I. MANOVSKII (2013): "Job Selection and Wages over the Business Cycle," *The American Economic Review*, 103, pp. 771–803.

Measuring match quality - (functional form)

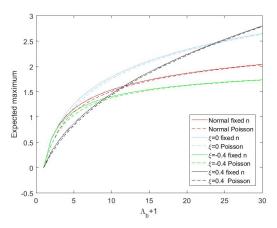


Figure 1: Expectation of the GEV distribution (Gottfries and Teulings (2016))

Measuring match quality - (sufficient statistic)

$$\Pr(F|m_{eh} + m_{hm}) = ((m_{eh} + m_{hm})F + 1) \exp[-(m_{eh} + m_{hm})(1 - F)]$$

$$\Pr(F|m_{eh} = 0, m_{hm},) = \frac{m_{hm} \exp[-m_{hm}(1 - F)]}{1 - \exp[-m_{hm}]}$$

$$\Pr(F|m_{eh} = 0, m_{hm},) = \frac{(m_{eh} + m_{hm})F \exp[-(m_{eh} + m_{hm})(1 - F)]}{1 - (m_{eh} + m_{hm})^{-1} (1 - \exp[-(m_{eh} + m_{hm})])}$$

